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In this supplementary appendix we first report additional descriptive statistics in

section 1. We begin by reporting the empirical payoff matrix for games involving

left-footed kickers and right-footed kickers on a separate basis, as well as the Nash

equilibria and the observed empirical frequencies for these two games. We then report

the distribution of strategies and scoring rates over time in the dataset. Among

other things, we observe that the scoring rate is lower for penalties shot in the last

ten minutes of a match, especially in close games. We conjecture that this lower

rate may be attributed to “nervousness.” We examine in section 2 the role that

nervousness may play on the tests of equality of winning rates across strategies. In

section 3 we provide evidence that supports the idea that for a given player one given

game is being played against randomly selected opponents. In section 4 we evaluate

the individual and aggregate tests of equality of winning rates across strategies as a

three-action game for a limited number of players. Lastly, in section 5 we examine

whether professional players also generate sequences with no serial correlation in

penalty shootouts where penalties are taken in rapid succession in a short span of

time.

1. Descriptive Statistics

1.1. Symmetry Across Types of Kickers

The empirical payoff matrices for left-footed and right-footed kickers when considered

on a separate basis are reported in Table 1A, along with the mixed strategy Nash

equilibria and the observed empirical frequencies for these two groups of players.
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[Table 1A Here]

It can be readily observed that empirical behavior is remarkably close to the

Nash predicted frequencies for each group. This is consistent with the findings at

the aggregate level, and with the fact that the hypothesis that these two games are

identical up to the renaming of the actions cannot be rejected.1

1.2. Strategic Choices and Scoring Rates Over Time

Soccer matches last two equal periods of 45 minutes, with a 15-minute half-time

interval.2 Table 2A shows the distribution of strategies and scoring rates by halves,

in the last 10 minutes of the match, and by score differences.

[Table 2A Here]

Most penalty kicks take place in the second half, where a relatively large amount

takes place in the last ten minutes. It may be noted that the scoring rate appears

to decrease over time: from 82.9 in the first half to 78.3 percent in the second half.

The main reason for this decrease is the notably lower scoring rate in the last ten

minutes of the game: 73.3 percent. This is the case both at the aggregate level for

all penalty kicks and for given score difference. Across score differences, it initially

appears that the scoring rate is slightly greater the closer the game is at the time of

the penalty shot (that is, it is greatest in ties, followed by the rates at the ‘-1’ and ‘1’

score differences, and then at ‘-2’ and ‘2’). This is the case when penalties are sorted

by halves. However, the opposite impression arises when we examine the penalties

shot in the last ten minutes of the match. In these cases, the closer the game is,

and the more important an additional goal would seem to be for the kicker’s team,

the lower the scoring rate appears to be. The scoring rate is lowest when games are

tied and when the kicker’s team is behind by one goal. This phenomenon may be

interpreted as “nervousness” in “big penalties,” and is often observed in other sports

as well. For instance, in professional NBA basketball, free throw shooters in the last

minute in close playoff games have a notably lower scoring rate than in regular season

1See Palacios-Huerta (2002). As is also indicated there, the power functions associated with the
aggregate Pearson tests for left-footed kickers, right-footed kickers, and for the goalkeepers facing
the two types of kickers are virtually identical to those presented in Palacios-Huerta (2002, Figure
2).

2Allowance for time lost is made in either period at the discretion of the referee for all time lost
through substitutions, removal of injuried players, wasting time or any other cause. We consider
the penalties shot in this extra time as shot in the last minute of each half.
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games that are not close, even though in this play individuals face no opponents and

have no strategic choices to make.3 Next, we examine whether “nervousness” may

have a noticeable impact on the tests of equality of winning rates across strategies

for the different players.4

2. Nervousness and the Tests of Equality of Winning Rates

As indicated above, the descriptive evidence in the previous table allows us to con-

jecture that nervousness may be a potential determinant of the scoring rate. This

conjecture is intuitive and consistent with the fact that many superstars have missed

or had penalties saved in critical situations of stress and pressure of great magnitude

(Miller (1998)).5 It is also consistent with the evidence from other plays at the pro-

fessional level, even when players face no opponents and have no strategic choices

to make (e.g., free throws in professional basketball). However, nervousness in itself

need not have any effect on the tests of equality of scoring probabilities, unless the

choice of strategy is related to the importance of the penalty.

First, a logit regression (not reported) for the choice of natural side that includes

all the independent variables considered in Table 6 in Palacios-Huerta (2002) shows a

positive but clearly insignificant effect on “important” penalties (those penalties shot

in the last ten minutes of a match when the score difference was 0, 1, or -1). Second,

in order to evaluate the extent of the effects in the tests of equality of scoring prob-

abilities at the individual and aggregate levels, we consider the same subsample of

kickers and goalkeepers except these important penalties. These observations repre-

sent 12.9 percent of the sample. We then perform the same individual and aggregate

statistical tests as in Tables 3 and 4 in Palacios-Huerta (2002). The results are shown

in Table 3A.

[Table 3A Here]

3See for instance the ESPN Magazine, January-June 2000 issues. Other examples where players
face no opponents, have no strategic choices to make, and where winning rates are notably lower in
“very important” situations include archery and skeet shooting.

4In soccer, teams are free to choose the penalty kicker. The data also include some evidence on
the location of the shot (its height). However, there is little variation across penalties and location
plays no noticeable role in the dataset.

5As is mentioned in Palacios-Huerta (2002), a logit regression for the scoring rate confirms this
conjecture for the penalties shot in the last ten minutes of close games (when the score difference is
0,1, or -1). Nervousness, rather than fatigue, is the typical reason given by professional players in
interviews (Miller (1998)), an interpretation that is consistent with the low level of effort that needs
to be supplied in a penalty kick.
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The null hypothesis is rejected for 2 players at the 5 percent level and for 4 players

at the 10 percent level. Recall that 2.1 and 4.2 are the number of rejections we

would expect from a sample with forty-two experiments, and that 3 and 5 rejections,

respectively, were obtained in Palacios-Huerta (2002, Table 3). The results indicate

that, even though the number of rejections in the full sample were already basically

those predicted by the theory, the number of rejections now virtually coincides with

the predictions. Note also that the p-values of the Pearson statistics continue to be

distributed quite uniformly across deciles.

With regard to the tests at the aggregate level, the Pearson statistic of the joint

test of the null hypothesis that all observations are generated by equilibrium play is

38.836, with a p-value of .610. This result is similar to that in the full sample. Like-

wise, similar results are obtained for goalkeepers and kickers as separate groups. The

results of the KS tests still decisively support the hypothesis of equality of winning

rates, although the p-values are slightly lower than in the full sample.6

We conclude from the analysis that the results of the tests of equality of scor-

ing rates at individual and aggregate levels continue to support quite strongly the

first implication of the Minimax Theorem when the most important penalties are

considered on a separate basis.

3. Tests of Equality of Winning Rates for Subsample Tests

An interpretation in the literature of the mixed strategy equilibrium is that it provides

a good description of the steady state behavior of players who play one given game

repeatedly against randomly selected opponents (Osborne and Rubinstein, 1994, pp.

38–39). A simple test could then detect whether in fact more than one game was

actually being played. The idea is that if in fact two or more different games were

played—but somehow the tests of equality of winning rates in the whole sample did

not reject the hypothesis of equality of winning rates across strategies—then testing

the hypothesis for different subsamples of the data would tend to reject the hypothesis

that winning rates are identical, or at least show significant variation in the p-values

of the test. This idea is implemented next for many different subsets, all of the same

6The power functions of these tests are essentially the same as those in Figure 2 in Palacios-
Huerta (2002). If we assume that “representative” players participate in every penalty kick, the
Pearson statistic is .032 (p-value: .858) for “important” penalties, and .797 (p-value: .371) for “non-
important” penalties. Similar values are found for kickers alone and for goalkeepers alone for each
class of penalties.
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size, randomly chosen for each player. The first three columns in Table 4A report

the sample size per subset, and the average p-value and standard deviation of the

p-values of the Pearson’s tests of the hypothesis of equality of winning rates when

evaluated for 100 subsets for each player.

[Table 4A Here]

The results show that the average p-values are very similar to those found in

Palacios-Huerta (2002, Table 3) for each and every kicker and goalkeeper in the sam-

ple. Moreover, the standard deviation of the p-values for a given player is relatively

low, always below .187. This great stability in p-values helps confirm the idea that for

a given player one given game is being played against randomly selected opponents.

Additional empirical support may also be obtained by testing the assumption that

opponents are homogeneous (taking into account, as in Palacios-Huerta (2002), the

natural sides for the players). This idea may be tested using a regression framework

and implementing an F -test of the joint significance of opponents’ fixed effects. If

opponents are statistically homogeneous, the F -test should not reject the null hy-

pothesis that all opponent-fixed effects are equal. This regression is implemented for

various dependent variables (including the direction of the shot {L,R} and whether a

goal is scored or not), limiting the sample to opponents with at least 10 observations

in the dataset, and including various covariates such as indicators corresponding to

the different 10-minute segments of the game, the score at the time of the penalty

kick, whether the kicker plays for the home team, and league and year interactions.

The results of the F -tests are available upon request. They show that in 2 cases can

we reject the hypothesis that opponents are statistically identical at the 5% level, and

in 4 cases at the 10% level. These results are just those predicted by chance with 42

observations.7 Hence, they again conclusively support the interpretation that for any

given player one given game is being played against randomly selected opponents.

Lastly, additional evidence is also consistent with these results. If a given player

plays one given game against various opponents as the results in Table 4A and the F -

tests indicate, then the elements of the payoff matrix should be quite “stable.” This

idea may be evaluated using the technique of bootstrapping to obtain confidence

intervals on the payoffs in each of the cells for given player by studying a sample

7Interestingly, p-values tend to be greater for goalkeepers than for kickers, indicating that goal-
keepers may tend to be more homogenous than kickers.
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of bootstrap estimators obtained by sampling m observations with replacement, and

recomputing the payoffs with each sample. The number of bootstrap repetitions is

chosen following Andrews and Buchinsky (2000). The results show that the sampling

variability of the estimator of the payoffs is very small. In particular, the standard

deviation for πLL and πRR is between 0.021 and 0.043 across all the different players

in the sample, whereas for πLR and πRL it is below 0.015 in all cases. The variation

in πLR and πRL is notably lower mostly because the scoring rate is always extremely

high when kickers and goalkeepers strategies do not coincide. The stability in the

payoffs for each and every player is again consistent with the idea that one game is

being played against various opponents.

4. Testing for Equality of Winning Rates in a Three-Action
Game

Most players in the sample, particularly goalkeepers, never choose C or choose it just

once or twice over the 1995-2000 period we examine. Therefore, having so few or

no observations for them, it is not possible to conduct individual level tests of the

Minimax hypothesis when the strategic situations are treated as a three-action game.

Moreover, as indicated in Palacios-Huerta (2002, footnote 11) and Chiappori et al

(2000), the availability of C as an action is not a real issue in the empirical analysis

of aggregate data across players. Yet, it may be of interest to evaluate the tests of

winning rates across strategies in a three-action game for the small number of players

with most C observations. There are 10 kickers that were categorized to have at least

3 kicks to the center. The tests are implemented in Table 5A for these players.

[Table 5A Here]

Interestingly, the results in Panel A are quite supportive of the hypothesis of

equality of winning rates across the three actions. There is only 1 rejection at the 10

percent level, exactly the amount predicted with 10 players. Also, the p-values of the

tests are distributed quite uniformly across deciles. Consistent with this, the Pearson

and KS tests in Panel B at the aggregate level strongly support the hypothesis that

the data for all individual experiments were generated by equilibrium play.

We conclude that these results support the null hypothesis of equal success rates

across strategies for these players. As is well known, however, when the amount of

observations for one of the strategies is low, a problem with the KS test is that it does
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not have substantial power against alternative hypotheses (see, for instance, Massey

(1951)).

5. Testing for Serial Correlation in Penalty Shootouts

It is known that the equilibrium strategies in repeated zero-sum games are indepen-

dent of the time lags between the stages of the game. Moreover, the equilibrium

strategies in the repeated game dictate that at every stage players play according to

the equilibrium strategy of the stage game. Therefore, from the theoretical perspec-

tive, time lags have no influence on equilibrium play. Yet, it is empirically of interest

to evaluate whether time lags play a role in the result of serial independence obtained

in the natural setting studied in Palacios-Huerta (2002). Recall that professional

soccer players were involved in no more than 15-20 penalty shots in a given year.

Here we test for serial correlation in penalty kick situations where repeated choices

are made in rapid succession. Penalty shootouts are used in elimination tournaments

to break ties. In the typical penalty shootout, five different players from each team

shoot a penalty kick each to the goalkeeper of the opposing team in a short span of

time. The two teams alternate taking one penalty at a time.8 The data we examine

below come from 82 penalty shootouts (817 observations) in games in the World Cup

1982-1998 and European Cup 1976-2000, and in the yearly Champions and UEFA

Cups, Spanish Cup, Italian Cup, and English Cup during 1990-2000.

[Table 6A Here]

We first test in Panel A whether goalkeepers are homogeneous.9 We use a re-

gression framework for different outcome variables following the idea in Chiappori

et al (2000). The null hypothesis that goalkeepers are homogeneous corresponds to

the goalkeeper-fixed effects being jointly insignificantly different from zero in different

outcome variables: a goal is scored, the kicker shoots to the natural side, and the

goalkeeper goes to the natural side. The analysis includes as explanatory variables

various covariates describing the state of the shootout (shootout tied, goalkeepers’

8If the tie persists after each team has kicked five penalty kicks, further penalties are shot until
the tie is broken. Not all five penalties need to be shot if the winning team of the penalty shootout
can be decided before all ten penalties are shot (e.g., if after each team has shot 3 penalties the
score is 3-0 for one of the teams).

9It is clearly not possible to test for homogeneous kickers given that there is only one observation
per kicker.
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team ahead by one goal, goalkeepers’ team is ahead by 2 or more goals, and goal-

keepers’ team behind by one goal, and goalkeeper is in the home team), as well as

goalkeeper- and kicker-fixed effects. We find that in none of the cases can we reject

the hypothesis that all goalkeepers are identical: the p-values of the F -statistic for

the joint significance of goalkeeper-fixed effects are .57, .71, and .69.

Having established that goalkeepers are statistically homogeneous, we can then

use all observations in the shootouts to estimate a logit equation for goalkeepers’

choice of natural side. We then test for serial correlation in Panel B. The main result

in this panel is that the null hypothesis that all the explanatory variables involving

own and opponents’ lagged strategies are jointly statistically insignificant (hypothesis

#1) cannot be rejected at conventional significance levels. Likewise, hypothesis #2–

#5 cannot be rejected at conventional significance levels either.10

We conclude from these findings that professional players generate sequences with

no serial correlation in both natural settings, when strategies are spaced out over time

and when strategies must be taken in rapid succession.

10The result in Panel A for goalkeepers is also obtained in Chiappori et al. (2000). Interestingly
enough, even though it is not possible to test for homogeneous kickers, the results on randomiza-
tion in Panel B are similar for the kickers when they are all treated as an “homogeneous” kicker;
hypotheses #1–#5 cannot be rejected for them either.
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TABLE 1A 

 
Payoffs and Mixing Probabilities by Kicker Type 

 
 

   Right-Footed Kickers 
 

    PAYOFFS 

    Goalkeeper 
 L R 

Kicker    L   57.23 95.35 
    R 93.20 68.79 

    
MIXING PROBABILITIES 

 gL 1 - gL kL 1 - kL 
Nash Predicted 42.47% 57.53% 39.03% 60.97% 
Actual 43.62% 56.38% 40.11% 59.98% 
 
 
 

 
  Left-Footed Kickers 

 
  PAYOFFS 

                                                         Goalkeeper 
 L R 

Kicker    L   60.46 94.20 
    R 92.32 72.20 

 
MIXING PROBABILITIES 

 gL 1 - gL kL 1 - kL 
Nash Predicted 40.84% 59.16% 37.35% 62.65% 
Actual 41.20% 58.80% 39.70% 60.30% 
 
 
Note: In each game ¨R¨ denotes  ¨kicker´s natural side¨ and ¨L¨ denotes ¨kicker´s ¨non-natural side.¨ 
 
 



TABLE 2A 
 

     Distribution of Strategies and Scoring Rates over Time 
 

                       Score                      Scoring 
              Difference          #Obs.    LL LC LR CL CC CR RL RC RR  Rate 
 

FIRST HALF 

   0   307  18.9 1.3 16.9 4.2 0.9 5.2 27.0 0.6 23.7  83.0 
   1   95  18.9 0 21.0 4.2 0 3.1 27.3 0 25.2  78.9 
  -1  111  21.6 0.9 25.2 1.8 0 0.9 19.8 0.9 28.8  83.7 
   2    28  25.0 3.5 21.4 3.5 0 0 21.4 0 28.5  78.5 
  -2    5  40.0 0 20.0 0 0 0 20.0 0 20.0  80.0 

     All Penalties 558  21.1 0.8 19.8 3.9 0.3 3.5 20.0 0.3 29.7  82.2 
  

SECOND HALF 

   0   273  14.6 1.4 25.6 4.3 0.7 6.2 14.6 0.7 32.6  80.5 
   1  140  19.2 0 17.8 4.2 0 2.1 28.5 0 27.8  77.1 
  -1  203  18.7 0.9 26.1 1.9 0 0.4 20.1 0.4 31.0  79.8 
   2    69  23.1 1.4 15.9 5.7 0 0 20.2 1.0 30.4  73.9 
  -2  109  25.6 0 25.6 3.6 0 3.6 16.5 0 24.7  78.0 

     All Penalties 859  18.7 0.9 23.2 3.3 0.3 3.6 22.8 0.5 26.3  78.3 
      

LAST 10 MINUTES 

   0    80  20.0 1.2 22.5 0 0 3.7 20.0 0 32.5  70.0 
   1   26  26.9 0 19.2 0 0 0 23.0 0 28.5  73.0 
  -1   87  24.1 0 18.3 1.1 0 0 22.9 0 34.4  70.1 
   2    16  18.7 0 18.7 0.6 0 0 25.0 0 31.2  81.2 
  -2   37  24.3 0 24.3 0 0 2.7 21.6 0 27.0  81.0 

     All Penalties 266  21.8 0.4 21.0 0.3 0 0.7 25.1 0 30.8  73.3 



 
 

TABLE 3A 
 

Tests for Equality of Scoring Probabilities 
Excluding Close Games in Last 10 Minutes 

 
         Pearson               Pearson 

         Kicker Obs.  Statistic p-value           Kicker Obs.  Statistic p-value 
 

 1. 30 0.000 0.999     1. 35 0.030 0.863 
 2. 31 0.020 0.902     2. 32 0.163 0.687 
 3. 35 0.110 0.735     3. 26 0.001 0.973 
 4. 37 0.083 0.773     4. 42 0.064 0.800 
 5. 35 0.054 0.817     5. 31 0.880 0.348 
 6. 32 0.050 0.823     6. 34 0.147 0.702 
 7. 40 0.156 0.693     7. 33 0.188 0.665 
 8. 35 0.341 0.559     8. 31 0.420 0.588 
 9. 27 0.241 0.623     9. 28 0.608 0.436 
10. 32 0.163 0.687    10. 35 0.033 0.855 
11. 30 0.536 0.464    11. 30 0.384 0.536 
12. 32 0.521 0.471    12. 30 0.545 0.460 
13. 34 0.344 0.558    13. 30 0.305 0.580 
14. 28 1.207 0.272    14. 39 0.507 0.476 
15. 26 0.337 0.539    15. 40 0.925 0.336 
16. 37 0.757 0.384    16. 30 3.000 0.083* 
17. 32 3.752 0.053*    17. 36 1.575 0.209 
18. 46 1.787 0.182    18. 37 4.359 0.037** 
19. 39 2.503 0.114    19. 38 1.121 0.290 
20. 36 1.496 0.221    20. 35 2.146 0.702 
21. 33 2.432 0.210 
22. 34 4.545 0.033** 
 
 

        Pearson Test         Kolmogorov-Smirnov Test 
Statistic p-value  Statistic p-value 

All players  38.836  0.610  0.643  0.792 
All kickers  21.435  0.494  0.467  0.802 
All goalkeepers  17.401  0.626  0.417  0.712 
 
 
 
 
 
 
 
 
      



 
 

 
TABLE 4A 

 
Tests for Equality of Scoring Probabilities 

for Subsample Sets 
 

Pearson Tests     Pearson Tests 
Total  Obs.per   Avg. Std. dev.                  Total    Obs.per   Avg. Std. dev. 

         Kicker Obs.   Subset p-value p-value           Kicker     obs.      subset  p-value p-value 
 

 1. 34 28 0.970  0.021    1. 37 31 0.982  0.102 
 2. 41 34 0.902  0.072    2. 38 32 0.898  0.060 
 3. 40 32 0.855  0.103    3. 30 25 0.866  0.101 
 4. 38 32 0.735  0.111    4. 50 42 0.804  0.098 
 5. 38 32 0.676  0.155    5. 36 28 0.777  0.155 
 6. 36 30 0.667  0.098    6. 34 28 0.702  0.147 
 7. 41 34 0.662  0.152    7. 37 31 0.638  0.109 
 8. 35 28 0.656  0.167    8. 37 31 0.588  0.176 
 9. 31 25 0.519  0.185    9. 32 25 0.568  0.180 
10. 35 28 0.490  0.164   10. 40 34 0.533  0.172 
11. 32 25 0.471  0.187   11. 33 26 0.519  0.163 
12. 32 25 0.471  0.149   12. 30 25 0.460  0.180 
13. 38 30 0.341  0.163   13. 34 28 0.447  0.144 
14. 30 25 0.333  0.137   14. 40 34 0.429  0.153 
15. 30 25 0.283  0.107   15. 44 37 0.328  0.082 
16. 42 35 0.257  0.082   16. 36 29 0.298  0.121 
17. 40 34 0.251  0.130   17. 42 36 0.118  0.071 
18. 46 27 0.201  0.091   18. 42 36 0.113  0.082 
19. 39 32 0.197  0.102   19. 42 36 0.071*  0.062 
20. 40 34 0.088*  0.067   20. 40 34 0.024**  0.022 
21. 40 34 0.038**  0.027 
22. 40 34 0.030**  0.022 
 
 
*Note: This table reports for each player the average p-value and the standard deviation of the 
p-values of one hundred tests of the equality of winning probabilities across strategies using  
randomly selected subsamples of all his observations with replacement. 
 
 
 
 
 
 
      

 
 



 
TABLE 5A 

 
               Tests for Equality of Scoring Probabilities 

 
 
         Panel A:  Pearson Tests for Individual Players in 3-Action Game 
 

       Mixture       Scoring Rate     Pearson 
Kicker             Obs.   L  R  C     L  R C       statistic  p-value 

1. Mendieta (Lazio)  34 0.32 0.59 0.09  0.90 0.85 1.00 0.677 0.712 
3. Zidane (Real Madrid)  40 0.45 0.47 0.07  0.83 0.84 1.00 0.577 0.749 
5. Mihajlovic (Lazio)  38 0.42 0.45 0.13  0.75 0.82 0.80 0.271 0.872 
6. Signori (Bolonia)  36 0.27 0.61 0.11  0.70 0.77 0.75 0.193 0.907  
7. Rui Costa (AC Milan) 41 0.19 0.71 0.10  0.62 0.86 1.00 3.401 0.182*  
8. Amoroso (Udinese)  35 0.32 0.57 0.11  0.72 0.85 0.75 0.738 0.691 
11. Del Piero (Juventus) 32 0.44 0.44 0.12  0.78 0.92 0.75 1.388 0.499 
14. Garitano (Zaragoza) 30 0.33 0.53 0.13  0.90 0.75 0.75 0.937 0.625 
20. Donosti (Eibar)  40 0.35 0.57 0.07   0.92 0.65 1.00 4.754 0.092** 
22. Penev (At. Madrid)  40 0.40 0.50 0.10  0.93 0.85 0.75 1.257 0.533 

     All kickers             366        0.349     0.546    0.103            0.820     0.815     0.842 

 
 
 

             Panel B:  Tests for Equality of Scoring Probabilities for Aggregate Distributions 

     The Pearson test evaluates the hypothesis that the data for all experiments were generated by equilibrium play: 
      pi 

L= pi 
R = pi 

C  for each player i, allowing for differences in probabilities across players. The Kolmogorov- 
     Smirnov test evaluates the null hypothesis that the empirical distribution of p-values in individual Pearson tests 
     was generated by random draws from the Uniform distribution U[0,1]. 
 
      Statistic     p-value 
  Pearson test    14.19      0.820 

 Kolmogorov-Smirnov test  0.199         0.501 
 
 
 
Note: *Indicates rejection at the 10 percent level, and ** indicates rejection at the 20 percent level. 

 
 



 
TABLE 6A 

 
Results of Significance Tests from Logit Equations 

for the Choice of Natural Side in Penalty Shoot-outs 
 
 

Panel A: Testing for Homogeneity of Goalkeepers 
 
    Goal is  Kicker chooses Goalkeeper goes 
Dependent Variable:  scored  Natural side  to Natural side 
 
P-values of F-Statistic for 
the joint insignificance of 
goalkeeper fixed-effects   0.57         0.71   0.69 
 
 

 
Panel B: Logit Equation for the Choice of Natural Side in Goalkeepers 

The estimating equation is N = G[a0 + a1lag(N) + a2lag2(N) + b0N* + b1lag(N*) + b2lag2(N*) + 
c1lag(N)lag(N*) +c2lag2(N)lag2(N*)], where N and N* denote the choice of “natural” strategy by a kicker 
and a goalkeeper, respectively (right for a right-footed kicker and for a goalkeeper facing a right-footed 
kicker, and left for a left-footed kicker and for a goalkeeper facing a left-footed kicker). The terms ‘lag’ and 
‘lag2’ refer to the strategies previously followed in the ordered sequence of penalty kicks. G[x] denotes the 
function exp(x)/[(1+exp(x)]. Rejections are based on likelihood-ratio tests. 
 

  
Null Hypothesis:    Likelihood-ratio test statistic (p-value) 

 
1.  a1=a2=b0=b1=b2=c1=c2=0    6.17  (p-value: 0.40) 

            
2.  a1=a2=0      2.03  (p-value: 0.36) 

 
3.  b1=b2=0      1.71  (p-value: 0.42)  

 
4.  c1=c2=0      1.03  (p-value: 0.59) 

 
5.  b0=0       1.07  (p-value: 0.30) 


