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Abstract

We extend the classic Merton (1969, 1971) problem that investi-

gates the joint consumption-savings and portfolio-selection problem

under capital risk by assuming sophisticated but time-inconsistent

agents. We introduce stochastic hyperbolic preferences as in Harris

and Laibson (2008) and �nd closed-form solutions for Merton�s opti-

mal consumption and portfolio selection problem in continuous time.

We �nd that the portfolio rule remains identical to the time-consistent

solution with power utility and no borrowing constraints. However,

the marginal propensity to consume out of wealth is unambiguously

greater than the time-consistent, exponential case and, importantly,

it is also more responsive to changes in risk. These results suggest

that hyperbolic discounting with sophisticated agents o¤ers promise

for contributing to explaining important aspects of asset market data.
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1 Introduction

In experiments with humans and animals, subjects often exhibit a reversal

of preferences when choosing between a smaller, earlier reward and an al-

ternative larger, later reward. The smaller, earlier reward is often preferred

when both rewards are near, while the larger, later reward is preferred as

they draw more distant.1 The persistence and robustness of these dynamic

inconsistencies has led some economists and psychologists to think �that the

problem may not come from some extraordinary condition that impairs the

normal operation of intentionality, but rather from the process by which all

people, perhaps all organisms, evaluate future goals� (Ainslie and Haslam,

1992, p. 58). Recent neurological evidence supports this view (McClure et

al, 2004).

Dynamically inconsistent behavior was �rst analyzed by David Hume,

Adam Smith, and later by Eugene Böhm-Bawerk, William S. Jevons, Al-

fred Marshall, Wilfredo Pareto, and others in their discussion of passions,

sentiments and intertemporal trade-o¤s. However, it was not until Strotz

(1955) that it was �rst formalized analytically. This �rst formalization ap-

proximates the temporal discount function by a function that discounts more

heavily than the exponential function for events in the near future, but less

heavily for events in the distant future. Beginning with the work of Laibson

(1994, 1997), during the last decade and a half an important body of liter-

ature has studied the kind of behavior that rational economic agents with

hyperbolic discount functions may exhibit.2 In particular, in order to attain

their goals, individuals may prefer to restrict their own future choices. The

1See Herrnstein (1997) and other references therein.
2This discount function has been used to model a wide range of behavior, including

consumption behavior, contracts, addiction, and others. See Harris and Laibson (2001),
O�Donoghue and Rabin (1999), DellaVigna and Malmendier (2004), and other references
therein.
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most apparent way for an individual to forestall his change in preferences is

to adopt some type of commitment device.

Gul and Pesendorfer (2001) propose an alternative approach to incorpo-

rate the evidence on preferences for commitment. They suggest that temp-

tation rather than a preference change per se (that is, rather than �dynamic

inconsistency�) may be the cause of these preferences.3 Gul and Pesendorfer

(2004) extend the analysis to an in�nite horizon in an attempt to capture the

experimental evidence with tractable, dynamically consistent preferences.

A particularly important aspect of this research is the extent to which dy-

namic inconsistency, temptation, and self-control problems may help us un-

derstand individuals�consumption-saving decisions, as well as their decisions

to allocate savings among available investment opportunities. Understand-

ing these decisions is, after all, at the heart of a large literature spanning the

last few decades on consumption, savings, asset pricing, macroeconomics and

other areas. Households are both consumers and investors, and their deci-

sions re�ect these dual roles. As consumer, a household chooses how much of

its income and wealth to allocate to current consumption, and thereby how

much to save for future consumption including bequests. As investor, the

household solves the portfolio-selection problem to determine the allocations

of its savings among the available investment opportunities. As the modern

�nance literature emphasizes, the optimal consumption-saving and portfolio-

selection decisions typically cannot be made independent of each other (see

Merton 1969,1971).

The purpose of this paper is to study the e¤ects of dynamic inconsistency

3They develop a two-period axiomatic model where an ex ante inferior choice may tempt
the individual in the second period. Individuals have preferences over sets of alternatives
that represent the second period choices. Their representation of preferences identi�es the
individual�s commitment ranking, temptation ranking, and costs of self-control. Moreover,
their model yields both di¤erent behavioral and normative implications than the change
in preferences captured by the hyperbolic discounting approach.
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on the joint consumption-saving and portfolio-selection problem. Interest-

ingly, despite the fact that the consumption-saving problem has received sub-

stantial attention in the literature on dynamically inconsistent preferences,

the consumption-saving and portfolio-selection problem has received virtu-

ally no attention.4 In particular, we will examine the implications of a hy-

perbolic discount function for the lifetime consumption-saving and portfolio-

choice problem of an individual household in a continuous-time setting. The

analysis may be considered relevant for the following reasons:

First, it is important to evaluate whether emotions and self-control play

a role in considerations involving time and risk preferences, and hence in in-

tertemporal consumption, saving, and portfolio decisions and in asset prices.5

Hirshleifer (2001), for example, surveys and assesses the theory and evidence

regarding investor psychology as a determinant of asset prices, and considers

that �this issue is at the heart of a grand debate in �nance spanning the last

two decades�(p. 1552). Gul and Pesendorfer (2004) have shown that their

dynamically consistent preferences do have relevant implications for these

decisions. In particular, increasing the agents preference for commitment

while keeping self-control constant increases the size of the equity premium.6

Yet, the extent to which dynamically inconsistent preferences have relevant

implications for consumption-saving allocations, portfolio choices and asset

prices remains unaddressed in the literature.

Second, as emphasized in the �nance literature and indicated above,

4There is an important amount of work on intertemporal consumption-savings deci-
sions (e.g., Laibson (1994, 1997), Krusell and Smith (2003), Harris and Laibson (2001)).
Luttmer and Mariotti (2003) is, to the best of our knowledge, the only paper that also
considers households� portfolio decisions. However, they do not study the response of
consumption and prices to changes in risk.

5Halevy (2008) o¤ers some experimental evidence of the interplay between risk and
time preferences.

6Similarly, Krusell et al (2002) elaborate on the Gul-Pesendorfer framework which they
use to interpret wealth and asset pricing data.
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consumption-saving and portfolio-selection decisions typically cannot be made

independently of each other. In this sense, the available evidence from the

consumption-saving problem need not be su¢ cient to provide a complete

understanding of these decisions.

Third, these joint decisions have been subject to a great deal of theoreti-

cal and empirical scrutiny in the consumption-based asset pricing literature

under exponential discounting, in particular in the extensive literature on the

equity premium puzzle and the excess volatility puzzle.7 As a result of these

e¤orts, empirical evidence is readily available to evaluate the implications of

a hyperbolic discounting structure for observed market data on consumption

and security returns.

Lastly, during the last two decades several attempts have been made in the

literature to try to resolve the equity premium and other asset pricing puzzles

by departing in increasingly complicated ways from the tractable framework

of a representative agent, time-additive isoelastic preferences, and complete

frictionless markets. In this paper we maintain the standard tractable frame-

work with preferences de�ned only over consumption.

More precisely, the paper examines the intertemporal consumption and

portfolio choice problem of an investor with dynamically inconsistent prefer-

ences in a stochastic dynamic programming setting. We consider this setting

because it o¤ers valuable advantages. In particular, the use of continuous-

time methods has become an integral part of �nancial economics, and has

produced models with a rich variety of testable implications (see Sundaresan

(2000) for a review). The adoption of a continuous-time model, in addi-

tion, o¤ers a crucial advantage over much of the literature, which has mostly

adopted a discrete-time discount function
�
1; ��; ��2; ��3; :::

	
, � 2 (0; 1),

� 2 (0; 1), to model the gap between a high short-run discount rate and

7See, for instance, Kocherlakota (1996), Campbell (2000) and Mehra (2008) for reviews.
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a low long-run discount rate. As Harris and Laibson (2001) and other au-

thors have noted, a recurrent problem that plagues most applications of the

discrete-time discount function employed in the literature is that strategic

interactions among intrapersonal selves often generates counterfactual policy

functions where consumption functions are not globally monotonic in wealth,

and may even drop discontinuously at a countable number of points.8 More-

over, hyperbolic Markov equilibria are not unique in deterministic discrete-

time settings (Krusell and Smith, 2003).

These problems can be avoided in a continuous-time setting. Our ap-

proach is motivated by Harris and Laibson (2008) Instantaneous Grati�ca-

tion (IG) model, which is based on a quasi-hyperbolic stochastic discount

function.9 The IG model is dynamically inconsistent and, while it captures

the qualitative properties of the discrete-time � � � model, it resolves the
pathologies of multiplicity of equilibria and non-monotonicity of the con-

sumption function that have �awed previous theoretical advances in the lit-

erature of time-inconsistent preferences.10 Interestingly, it turns out that

our model will yield closed-form solutions for the optimal consumption and

portfolio rules that makes them readily comparable to those results obtained

under a constant rate of time preference as in Merton (1969, 1971).

8These pathologies often occur only in a limited region of the parameter space which,
as Harris and Laibson (2008) indicate, typically includes defensible calibrations of the
parameters. O�Donoghue and Rabin (1999) note that these pathologies arise only to the
extent that individuals are sophisticated, i.e. they are aware of their dynamic inconsis-
tencies. It would be needed to assume that individuals are completely naive about their
dynamic inconsistency problem; otherwise, the pathologies would be reinstated.

9They show the existence and uniqueness of a hyperbolic equilibrium, and the equilib-
rium consumption function is continuous and monotonic in wealth.
10See Harris and Laibson (2008; Section 5).
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2 A Lifetime Consumption-Portfolio Problem
with Hyperbolic Discounting

We study the classical Merton (1969, 1971) intertemporal consumption-

saving and portfolio-selection problem with hyperbolic discounting prefer-

ences rather than with exponential discounting ones. An individual is due to

make consumption and portfolio decisions that maximizes his discounted life-

time utility of consumption. We assume in�nite lifetime, complete markets

and no borrowing constraints.

Since our setup is an extension of Harris and Laibson (2008),11 we attempt

to adopt their notation whenever possible. The individual�s wealth xt at any

time t can be invested in two assets: a riskless bond with value Bt and a risky

asset for an amount NtPt; where Nt is the quantity held the of risky-asset

and Pt is its price at time t; in particular,

xt = NtPt +Bt:

While the risk-free asset earns a constant rate of return r continuously, the

price Pt follows a geometric Brownian motion with drift � and di¤usion

parameter �; where we assume away a dividend process. Speci�cally,

dBt = rBtdt;

dPt = �Ptdt+ �Ptdzt; (1)

where zt is a standard Wiener process. The change in the individual�s wealth

during a period of in�nitesimal duration dt is determined by the investment

proceeds minus consumption ctdt:

dxt = [��txt + (1� �t) rxt � ct] dt+ ��xtdzt; (2)

11Harris and Laibson (2008) consider a setup with one (risky) asset only and impose
credit constraints.
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where �t is the proportion of wealth invested in the risky asset at time t.

Following Harris and Laibson�s (2008) quasi-hyperbolic setup, the consumer-

investor seeks to maximize his expected lifetime discounted utility of con-

sumption:

Et

�Z t+� t

t

�(s�t)u (c (xs)) ds+

Z 1

t+� t

��(s�t)u (c (xs)) ds

�
; (3)

where � 2 (0; 1] and � 2 (0; 1]: The discount function decays exponentially
at rate 
 = � ln � up to time t + � t, drops discontinuously at t + � t to a
fraction � of its level just prior to t+ � t, and thereafter decays exponentially

at a rate 
 = � ln �. The arrival of the �future�is stochastic. In particular,
� t is distributed exponentially with parameter � 2 [0;1); which e¤ectively
smooths the discount factor and avoids having a kinked or discontinuous

discount factor.12 The IG model in Harris and Laibson (2008) corresponds

to the limit �!1.
As is well known, a closed-form solution can be found for the case of con-

stant relative risk aversion (CRRA) utility when discounting is exponential

(Merton 1969, 1971). For this reason, we consider the utility �ow

u (c) =
c1�b

1� b; (4)

where b > 0 is the risk aversion parameter.

Lifetime utility is maximized subject to the budget equation (2) and ini-

tial wealth xt > 0. Markets are perfect and there are no taxes, transaction

costs, trading restrictions or other impediments to trade. Also, there are

no commitment mechanisms. In other words, the introduction of hyperbolic

12Alternatively, as noted by Harris and Laibson (2003), the value function can be for-
mulated as w (xt) = Et

�R1
t
D� (t; s)u (c (xs)) ds

�
where the discount factor D� (t; s) is

stochastic and equal to

D� (t; s) =

�
e�
(s�t) wp e��(s�t) () if s� t � � t
� � e�
(s�t) wp 1� e��(s�t) () if s� t > � t:
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discounting preference is the only di¤erence with respect to the classic for-

mulation of the problem in the literature. As Merton (1969, 1971) shows,

this problem can be solved in closed form for optimal consumption and port-

folio rules under exponential discounting. We will show next that an explicit

solution also exists for the general stochastic hyperbolic-discounting case.13

We consider the continuous-time generalization introduced by Harris and

Laibson (2008) for two reasons:

i. In order to solve for the Markov perfect Nash equilibrium of the in-

trapersonal game induced by the hyperbolic discounting structure we use the

equivalence result in Barro (1999), Laibson (1997), and Luttmer and Mariotti

(2003). They show that in the special case of CRRA utility with no liquidity

constraints and no commitment devices, the equilibrium of the intrapersonal

game exists and is observationally equivalent to a dynamically consistent op-

timization problem that shares the same instantaneous utility function and

equilibrium policy functions but with a di¤erent, higher long-run discount

rate.14 This allows us to solve the model using a Bellman System.

ii. The IG model is an important step forward in the treatment of hyper-

bolic discounting preferences since many of the pathologies of the discrete-

time hyperbolic models are eliminated in the continuous time case when

�!1 as will be discussed later.

The problem for the consumer-investor is to maximize the current-value

13Note that the exponential-discounting setup corresponds to the particular hyperbolic-
discounting case with �! 0 or � = 0.
14The observationally equivalence critique does not apply to Harris and Laibson (2008)

thanks to the liquidity-constraints assumption. The IG model with liquidity-constrained
individuals has the same value function of a dynamically consistent optimization problem
with the di¤erence that the utility function is wealth contingent. In our problem, however,
there are no liquidity constraints.
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function

w (xt) = Et

�Z t+� t

t

e�
(s�t)u (c (xs)) ds+ e
�
� t�v (xt+� t)

�
; (5)

where 
 2 (0;+1) is the discount rate and v (xt+� t) is the continuation-value
de�ned as

v (x�) �
Z 1

�

e�
(s��)u (~c (xs)) ds;

which discounts utility �ows exponentially, and where ~c stands for the con-

sumption levels optimally chosen by future selves. The maximization prob-

lem is subject to the budget equation (2) and the constraints cs � 0 and

xs � 0; 8 s � t, given an initial wealth endowment xt > 0:

Assumptions

We impose the following set of assumptions:

A1: b > 1� � (feasibility condition),

A2: 
 > (1� b)
�
��� 1

2
b��2
�

(integrability condition),

A3: lim
�!1

Et fexp(�
t)v (x�)g = 0; (transversality condition),

where �� and ��2 in A2 are the mean and variance of the optimal portfolio

return rate, as will be characterized below. A1 and A2 ensure that the

problem is well de�ned in the sense that the program has a �nite solution.

As discussed in Harris and Laibson (2008, Section 5.1), in practice, these two

assumptions are always satis�ed at the empirical estimates of the coe¢ cients

b, � and 
 typically obtained in the literature. A3 is a convergence condition

for integral (5).

In what follows, for notational convenience we dispense with the time

subscripts unless it becomes otherwise necessary.
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The current-value function (5) can be written recursively as

w (x) = u (c (x)) dt+e��dtE[e�
dtw (x+ dx)]+
�
1� e��dt

�
E[e�
dt�v (x+ dx)]

(6)

which satis�es the Bellman equation


w (x) = u (c (x)) +
E[dw (x)]

dt
+ �[�v (x)� w (x)]; (7)

where the second term in the right-hand side can be derived applying Ito�s

Lemma to (2) :

E[dw (x)]

dt
= (rx+ (�� r) �x� c) w0 (x) + 1

2
�2�2x2w00 (x) :

As noted by Harris and Laibson (2008), the term � (�v (x)� w (x)) in
(6) re�ects the hazard rate � of making the transition from the �presen�

to the�future,� at which point the continuation value v (x) begins. The

intertemporal discount function that applies to the utility �ows pertaining

to the �future�is a fraction � of the function that prevails in the �present.�.

Of course, there is no transition e¤ect if � = 1. The intuition is that when

� = 1 there is no di¤erence in how present utilities and in future utilities

are discounted, in which case we would have obtained the classic expression

of the time-consistent Bellman equation. The same would be true if the

transition probability from �present�to �future�were nil, i.e. if � = 0.

Let fc�; ��g denote the optimal policy set of the problem de�ned as

fc� (x) ; �� (x)g = argmax
c;�

fw (x)g

Recalling the Bellman equation (7), we can write

fc� (x) ; �� (x)g = argmax
c; �

fu (c) + (rx+ (�� r) �x� c)w0 (x) (8)

+
1

2
�2�2x2w00 (x) + � (�v (x)� w (x))g;
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or, suppressing the terms that do not contain the controls,

fc� (x) ; �� (x)g = argmax
c;�
fu (c) + ((�� r) �x� c)w0 (x) + 1

2
�2�2x2w00 (x)g:

The unique interior optimum from the �rst order conditions determines

the optimal consumption and portfolio policies. In particular, such conditions

are

0 = (�� r)xw0 (x) + �2��x2w00 (x) ; (9)

and

0 = u0 (c�)� w0 (x) ; (10)

which imply that the optimal policies must satisfy

�� (x) = � w0 (x)

xw00 (x)

(�� r)
�2

;

and

u0 (c�) = w0 (x) :

The natural candidate solution for w (x) that corresponds to a CRRA,

power instantaneous utility (4) is

w (xs) = �
�b
H

x1�bs

1� b; 8s � t; (11)

and the corresponding optimal portfolio and consumption rules are 15

�� =
1

b

(�� r)
�2

; 8x > 0; (12)

and

c� (x) = �Hx; (13)

where �H stands for the hyperbolic marginal propensity to consume out of

wealth. We note from (12) that the portfolio strategy is independent of the

15Note that equation (12) is obtained by inserting the derivatives of the candidate so-
lution (11) into (9) : In particular, the derivatives are w0 (x) = ��bH x

�b and w00 (x) =
�b��bH x�b=x = �bw0 (x) =x.
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current wealth level, and is identical to the portfolio rule of the CRRA, ex-

ponential, time-consistent agent studied in Merton (1969, 1971).16 However,

as we show below, the wealth dynamics will be a¤ected by a di¤erent, higher

marginal propensity to consume relative to the Merton case.

In order to �nd an explicit solution for �H ; we expand the terms in the

right-hand side of the Bellman equation that characterizes the hyperbolic-

discounting problem: First, we note that

u (c� (x)) = �Hw (x) (14)

Then, inserting (12), (13) ; (14) and the derivatives of the candidate solu-

tion w0 (x) = (1� b) 1
x
w (x) ; w00 (x) = �b (1� b) 1

x2
w (x) into the Bellman

equation (7), we obtain


w (x) = �Hw (x)+(1� b)
 
��H + r +

(�� r)2

2b�2

!
w (x)+� (�v (x)� w (x))

(15)

We show in the Appendix that the last term in the right-hand side of (15)

is

� (�v (xt)� w (xt)) = �� (1� �)�H
Z 1

t

e�(�+
)(s�t)Et [w (xs)] ds (16)

where Et [w (xs)] is determined by

Et

�
w (xs)

w (xt)

�
= Et

"�
xs
xt

�1�b#
= exp

(
(1� b)

 
��H + r +

(�� r)2

2b�2

!
(s� t)

)
;

(17)

which is derived from the candidate solution (11) and the policy rules and

by applying Ito�s Lemma17.

16Note that technically this is due to the fact that the present self has no control over
the variables that determine the continuation value function v (x), as can be veri�ed in
(8) :
17Speci�cally, the expected growth of wealth when the agent chooses optimal poli-
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Finally, using (16) and (17) into (15), in account of the transversality

condition A3, we obtain

�H =
1

b

0BBB@
"

 + �H (1� �)

�

�+ 
 � (1� b)
�
��H + ��� b ��

2

2

�#| {z }
E¤ective discount rate

� (1� b)
�
��� b ��

2

2

�1CCCA
(18)

where �� � ��� + (1� ��) r and ��2 � ��2�2 are the mean and variance of

the optimal portfolio�s rate of return18. The terms in brackets account for

the e¤ective discount rate, which is greater than 
 under A1 and A2. In

the particular case where � = 1 or � = 0; the e¤ective discount rate would

simply be 
 and the marginal propensity to consume (MPC) out of wealth

would correspond to the exponential discounting model treated in Merton

(1969, 1971):

�M =
1

b

�

 � (1� b)

�
��� b ��

2

2

��
: (19)

In turn, for the case of interest where � ! 1 that corresponds to IG

model, the MPC reduces to19

�IG � �H j�!1 =
1

b� (1� �)

�

 � (1� b)

�
��� b ��

2

2

��
; (20)

cies (12)-(13) is given by E [dx=x] =
h
��H + r + 1

b
(��r)2
�2

i
dt: Applying Ito�s Lemma on

the candidate function (11) ; the expected growth of the value function is E [dw=w] =

E
�
dx1�b=x1�b

�
= (1� b)

�
��H + r + (��r)2

2b�2

�
dt; which immediately implies (17) : (See

the Appendix for details on the derivations).
18Note that, the optimal policy �� = 1

b
(��r)
�2 given by (12) implies:

��� b ��
2

2
= r +

(�� r)2

2b�2
> 0:

19Note that if � = 0; the Merton and the IG propensities to consume would reduce to:
�R = �M j�=0 = 1

b [
 � (1� b) r] and �H j�!1
�=0

= 1
b�(1��) [
 � (1� b) r] :
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which is increasing in � 2 (0; 1) and, under assumptions A1-A2, is unam-
biguously greater than the Merton�s �M :

Note that the MPC �IG is linear in �� and ��2 and is not wealth contin-

gent.20

3 Discussion

The following results are obtained from the analysis:

i. Consumption, Savings and Portfolio Choices

First, the relative proportion of wealth allocated to stocks and bonds

along the equilibrium path is identical to that obtained in the exponential

discounting case (i.e. where � = 1 or � = 0). This means that the size of the

risk premium of stocks over bonds is also identical to that in the exponential

case. In other words, the size of the equity premium is no more or less

puzzling than what it is under exponential discounting.

Second, since the e¤ective rate of time preference is greater than 
 when

� 2 (0; 1) and � > 0; the optimal marginal propensity to consume out of

wealth �H is unambiguously greater than the exponential discounting so-

lution obtained by Merton (1969, 1971).21 This is in line with the results

in the literature that anticipate present bias.22 Behind this conclusion is

the assumption that the hyperbolic discounting model and the exponential

discounting model have the same long-run discount rate. While this is a

20This is contrary to what has been posited in for example Gong et al. (2006, 2007).
21Note that in the particular case of logarithmic instantaneous utility, i.e. where b! 1;

for which the intertemporal subsitution e¤ect and the wealth e¤ect cancel each other, the
marginal propensity to consume out of wealth is simply given by the subjective discount
rate 
 in the exponential model, and 
=� in the IG, hyperbolic model.
22See for instance O�Donoghue and Rabin (1999), Laibson (1994, 1997), Harris and

Laibson (2003, 2008) and Luttmer and Mariotti (2003).
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useful modelization typically followed in the literature that studies the im-

plications of introducing dynamically inconsistent preferences, this needs not

be the case.23 For instance, the structural estimates reported in Laibson et

al (2007) indicate that the �-� quasi-hyperbolic model may have more short-

run discounting and less long-run discounting than the exponential model.

An alternative formulation could have followed this route and introduced two

di¤erent parameters, rather than one, to compare the two models. We would

then have reached the same general conclusion: hyperbolic discounting has

quantitative implications for consumption-saving allocations and whether the

model generates greater or lower consumption than in the exponential case

depends on the speci�c parameters. For instance, the parameter estimates

in Laibson et al (2007) indicate that hyperbolic discounting would indeed

generate a greater consumption share.

Finally, note that under the feasibility assumption A1; �H increases as

� 2 (0; 1) decreases and as � 2 (0;1) increases. As stated above, the

exponential discounting is a limit case where the marginal propensity to

consume is �M = �H j�=1 = �H j�=0 :
These results imply that outcomes are observationally equivalent to the

exponential case with a suitably higher level of discounting. Barro (1999)

also �nds that the basic properties of the neoclassical growth model under

exponential discounting remain intact when allowing for a variable rate of

time preference.

ii. Level of Asset Prices and Returns

A lower saving rate than in the exponential case implies a lower demand

for �nancial assets, which in turn implies lower prices and greater rates of

return for both stocks and bonds. As a result, hyperbolic discounting prefer-

ences may predict a greater risk-free rate than exponential preferences as well

23We are grateful to a referee for pointing out this aspect.
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as a greater return on equity. This implies that it would be easier to reconcile

the size of the equity premium by simply explaining the size of the risk-free

rate. In other words, under hyperbolic discounting there is less pressure to

explain the size of returns on stocks and more pressure to explain the size

of the risk-free rate than under a constant rate of time preference. In this

sense, some of the potential solutions to the risk-free rate puzzle posited in

the literature will have greater power to contributing to explain the size of the

equity premium when discounting is hyperbolic rather than exponential.24

The IG case put forward in Harris and Laibson (2008), in which �!1,
is of particular relevance for it has dealt with a number of problems inher-

ent in the discrete-time approximation of hyperbolic discount functions, such

as a kinked discount factor and the necessity to de�ne the expected dura-

tion of the present term. Importantly, the IG model resolves the patholo-

gies of multiplicity of equilibria and non-monotonicity of the consumption

function that have �awed previous theoretical advances in the literature of

time-inconsistent preferences. In particular, the properties of the IG model

include the existence and uniqueness of equilibrium as well as the continuity

and monotonicity of the consumption function.25 For these reasons, in the

discussions that follow we focus on this particular case of interest.

iii. Comparative Statics of Consumption with Respect to

Risk: The Magnification Effect

Despite the fact that there are no implications for the risk premium other

than quantitative implications for consumption-saving allocations and the

level of asset returns, an important di¤erence arises with regard to how con-

sumption is related to risk.

Risk has a linear e¤ect on consumption and depends on the degree of

24See, for instance, Kocherlakota (1996), Campbell (2000) and Mehra (2008) for reviews
of the literature.
25See Harris and Laibson (2008; Section 5).
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risk aversion. Merton (1969) calculated the elasticities of consumption with

respect to expected return �� and to variance ��2 for the exponential case, and

noted that their sign depend on the parameter of risk aversion b :

�c;��jM = ��
b� 1
b

1

�M
;

and

�c;��2jM = ���2 b� 1
2

1

�M
:

In the hyperbolic IG case, the sign of the corresponding elasticities also de-

pend on b being greater or lower than 1: However, the absolute value is

unambiguously greater than in the Merton case for b 6= 1:26

�c;��jIG = ��
b� 1

b� (1� �)
1

�H
;

and

�c;��2jIG = ���
2 b

b� (1� �)
b� 1
2

1

�H
:

This result arises from the fact that the sensitivity of the hyperbolic MPC

to changes in ��2 and �� is greater than in the exponential case. In particular,

in the exponential case the derivative of the MPC with respect to risk is

@�M
@��2

=
1� b
2
: (21)

while in the IG model, the e¤ect of risk on the marginal propensity to con-

sume is
@�IG
@��2

=
b

b� (1� �)
1� b
2
: (22)

We note that in both cases risk has a linear e¤ect on the marginal propen-

sity to consume, and that the derivatives are decreasing in risk for b > 1 and

26See Appendix for the derivation of the elasticities of consumption with respect to ��
and ��2:
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increasing in risk for b < 1.27 However, the absolute value of this relationship

is greater in the hyperbolic case than in the exponential discounting case:����@�IG@��2

���� > ����@�M@��2
���� ; 8b 6= 1:

This implies that for any b 6= 1; hyperbolic discounting generates a greater
response of the propensity to consume to changes in risk.28

One implication is that although the hyperbolic discounting�s MPC may

well be observationally equivalent to the exponential case for given ��2; �� and

risk aversion parameter b (i.e. there would be a suitable subjective rate 


that would make �IG = �M); the MPC would react more to changes in the

risk parameter. In models where risk is allowed to change (e.g. models with

stochastic volatility), this result provides a magni�cation mechanism that

would contribute to explaining the excess price volatility puzzle.

iv. Implications for Asset Prices in a Lucas Tree Model

We have seen that the relationship between the marginal propensity to

consume and portfolio volatility ismagni�ed through a greater absolute value

of its slope for coe¢ cients of relative risk aversion di¤erent than one. How-

ever, asset prices are exogenous in the Merton model. Hence, to determine

the quantitative importance of hyperbolic discounting as a driving force be-

hind stock market volatility, the introduction of a model with endogenous

asset prices is in order. This can be done by considering a simple continuous-

time version of Lucas�(1978) representative-agent fruit-tree model of asset

pricing. A tree (stock) yields fruit (dividends) Dt according to a geometric

Brownian motion:
dDt

Dt

= v dt+ � dZt:

27See Merton (1969), Section 7, for a discussion on the e¤ect of changes in �� and ��2 on
consumption.
28Note that for logarithmic utility both slopes are equal to zero, i.e. @�IG

@��2

��
b=1

=
@�M
@��2

��
b=1

= 0:
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Investors can buy shares in the stock at price Pt: The supply of shares

is normalized to 1 and we assume zero net supply of the risk-free asset. In

equilibrium, the representative agent follows the optimal policy c�t = ��xt,

where �� is the optimal MPC out of wealth. Ignoring bubble solutions, we

conjecture that the equilibrium price is proportional to dividends. Since in

equilibrium all dividends are consumed and wealth is equal to the value of

the stock:

Pt =
1

��
Dt.

The variability of prices will be directly linked to the variability of divi-

dends and to the variablity of the MPC in speci�cations where, for example,

the parameter � were stochastic. As we indicated earlier, it can be shown

that
@��

@�2
< 0 for b > 1;

@��

@�2
> 0 for b < 1.

The intuition for this is the same as in the exponential case as established

in Merton (1969). The slope of the schedule will depend on the relative

strength of the substitution and income e¤ects of the volatility parameter on

consumption, which is determined by the risk aversion parameter b:29 How-

ever, in the IG model the MPC and consequently prices are more responsive

to changes in risk.

The implications of these �ndings are the following:

1. From a theoretical perspective, these drastic di¤erences in

the comparative statics of consumption and asset prices with respect to risk

mean that hyperbolic discounting o¤ers a novel mechanism whereby changes

in risk may a¤ect consumption and stock prices.

2. From an empirical perspective, in order to get a sense of the

possible quantitative size of the volatility e¤ects, it is useful to study a cali-

brated model in the region of the parameter space that is empirically plausi-

29See Merton (1969), Section 7, for a detailed discussion.
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ble. Laibson et al. (2007) use a structural model and �eld data to estimate

an unrestricted discount function that allows the discount rate to di¤er in

the short-run and in the long-run. Theirs are, to the best of our knowledge,

the best available estimates obtained in �eld data. Their structural proce-

dure yields estimates for their benchmark case (which sets the relative risk

aversion parameter at a value of 2) of � = 0.7031 and � = 0.9580, with

standard errors of 0.1093 and 0.0068 respectively. Letting, for instance, the

relative risk aversion parameter be 3, yields an estimate of � = 0.5776 with

a standard error of 0.1339, leaving basically unchanged the estimate of �.

Since they consider a rich consumption model that includes stochastic la-

bor income, liquid and illiquid assets, revolving credit and other ingredients,

they can also perform several robustness tests to changes in the di¤erent

parameters of the model. These tests include compound cases where para-

meter changes are allowed to reinforce each other. The evidence they obtain

indicates that a reasonable range for the parameters we are interested in is

for the parameter � from 0.40 to 0.80 and for the paramenter b from 1 to 3.30

In Table 1 below we report the results of the calibrations for di¤erent

parameter values of the ratio:


 =
@�IG
@�2

����
�<1

=
@�M
@�2

����
�=1

=
b

b� (1� �)

which captures the magni�cation in the response of the MPC to changes

in risk relative to the standard, exponential-discounting case. We explore

di¤erent combinations of the parameter of relative risk aversion b and the

short-run discount factor �:

30As Laibson et al. (2007) discuss, the picture with respect to the relative risk aversion
coe¢ cient is not entirely clear. They consider a value of 2 for their benchmark case, and
also the values 1 and 3. The usual view in the asset pricing and consumption-savings
literatures is that it is in the range of 0.5 to 5. Gourinchas and Parker (2002) �nd values
between 0.1 and 5.3. Barro (2006) notes that savings rates (excluding human capital) fall
markedly as a country develops if b is much below 2, and are counterfactually low it is
much above 4.
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[Table 1 about here]

We �nd that 
 increases with �, for a given value of b, and similarly, given

�, 
 increases with b. In particular, for the preferred estimate in Laibson et

al (2007) of � = 0.70, we �nd that hyperbolic discounting generates between

11.1 percent (for b = 1) to 42.8 percent (for b = 3) greater responsiveness of

the MPC to changes in risk than in the standard formulation.

For the case of � = 0:80, which is a value that might seem to be on

the high end, hyperbolic discounting generates between a 7.1 to 25 percent

greater response of prices to changes in risk than exponential discounting,

whereas for � = 0.40, a value which should not be considered unrealistically

low given the �ndings in Laibson et al (2007), we �nd that hyperbolic dis-

counting generates a magni�cation of the response of the MPC to changes in

risk that is between 25 to 150 percent greater than in the exponential case. .

Summing up, calibrations of the Lucas model with hyperbolic discount-

ing in the empirically plausible region of the parameter space reveal that the

MPC, and therefore prices, are much more responsive to changes in risk than

in the standard case. Most of the calibrations indicate that this responsive-

ness is typically in the range of 10 to 50 percent greater, except when both

� and b are low when the responsiveness is above 50 percent greater.

We conclude that in light of the di¢ culties in the literature for explaining

stock market volatility, also known as the excess-volatility puzzle for stocks,

hyperbolic discounting o¤ers a great deal of promise for contributing to ex-

plaining an important and challenging aspect of asset market data.

4 Concluding Comments

The analysis has introduced dynamically inconsistent preferences in the stan-

dard setting where capital markets are perfect and frictionless, and where
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wealth is generated by stochastic returns on assets. Introducing labor income

jointly with the constraint that consumers may not borrow against future

labor income, incomplete markets, and other market frictions (e.g., taxes,

transaction costs) are directions that merit future research, even though it is

typically not possible to obtain closed-form solutions in these settings.

Over the last couple of decades a large literature has signi�cantly de-

parted from the tractable framework of a representative-agent, time-additive

isoelastic preferences, and complete frictionless markets in an attempt to ex-

plain asset pricing puzzles. This paper maintains the assumption of time and

state-separable preferences de�ned only over consumption.

Since the analysis considers a frictionless economy with no liquidity con-

straints, it becomes readily comparable to Merton (1969, 1971) and di¤er-

entiates our work from Laibson (1994, 1997) and Harris and Laibson (2003,

2008). As in Merton�s setup with constant relative risk aversion, the porfolio-

selection decision is independent of the consumption decision. We provide

closed-form solutions for a hyperbolic agent�s optimal consumption and the

optimal porfolio-selection problems and show that the latter is identical to

the Merton�s exponential case.

As for consumption, we obtain a closed-form solution that shows that the

marginal propensity to consume is pinned down from a system of ordinary

di¤erential equations. We show that the hyperbolic MPC is unambiguously

greater compared to the classic exponential case and, in addition, how the

MPC is more sensitive to changes in the risk and expected return parameters.

These �ndings suggest that this model of time-inconsistent preferences has

potential to contribute to explaining challenging aspects of asset market data,

particularly of stock market volatility. We leave this as a recommendation

for further research.
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5 Appendix

5.1 Derivation of Bellman equation (7)

The objective function can be written as in (6)

w (x) = u (c (x)) dt+e��dtE[e�
dtw (x+ dx)]+
�
1� e��dt

�
E[e�
dt�v (x+ dx)]

Multiply both sides by e
dt to get

e
dtw (x) = e
dtu (c (x)) dt+e��dtE[e�
dtw (x+ dx)]+
�
1� e��dt

�
E[�v (x+ dx)]

For small dt; we can approximate

e��dt � 1� �dt
e�
dt � 1� 
dt
e
dt � 1 + 
dt

Therefore, the above equation can be written as

(1 + 
dt)w (x) � (1 + 
dt)u (c (x)) dt+(1� �dt)E[w (x+ dx)]+�dtE[�v (x+ dx)]

Substracting w (x) from both sides we get


dtw (x) � (1 + 
dt)u (c (x)) dt+(1� �dt)E[dw (x)]+�dtE[�v (x+ dx)��v (x)�w (x)+�v (x)]

where

dw (x) = w (x+ dx)� w (x) ;
dv (x) = v (x+ dx)� v (x)

Dividing by dt


w (x) � (1 + 
dt)u (c (x))+(1� �dt) E[dw (x)]
dt

+�E[�dv (x)�w (x)+�v (x)]

and letting dt! 0; we obtain


w (x) = u (c (x)) +
E[dw (x)]

dt
+ �E[�v (x)� w (x)]: (23)
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Applying Ito�s Lemma and taking expectations we �nd

E [dw (x)] = w0E [dx] +
1

2
w00E

�
(dx)2

�
where, from (2) ;

E [dx] = (��x+ (1� �) r�x� c) dt

and
E
�
(dx)2

�
= �2�2x2dt

Thus, the Bellman equation (23) can be written as


w (x) = u (c (x))+(��x+ (1� �) r�x� c)w0 (x)+1
2
�2�2x2w00 (x)+� (�v (x)� w (x)) :

Q.E.D.

5.2 Derivation of (16)

Recall the de�nitions

w (xt) = Et

�Z t+� t

t

e�
(s�t)u (c (xs)) ds+

Z 1

t+� t

�e�
(s�t)u (c (xs)) ds

�
and

v (xt) � Et

Z 1

t

e�
(s�t)u (c (xs)) ds

= Et

�Z t+� t

t

e�
(s�t)u (c (xs)) ds+

Z 1

t+� t

e�
(s�t)u (c (xs)) ds

�
or

�v (xt) = Et

�Z t+� t

t

�e�
(s�t)u (c (xs)) ds+

Z 1

t+� t

�e�
(s�t)u (c (xs)) ds

�
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Therefore,

�v (xt)� w (xt) = Et

�Z t+� t

t

�e�
(s�t)u (c (xs)) ds�
Z t+� t

t

e�
(s�t)u (c (xs)) ds

�
= � (1� �)Et

�Z t+� t

t

e�
(s�t)u (c (xs)) ds

�
= � (1� �)

Z 1

t

e��(s�t)e�
(s�t)Et [u (c (xs))] ds

= � (1� �)
Z 1

t

e�(�+
)(s�t)Et [u (c (xs))] ds

So,

� (�v (xt)� w (xt)) = �� (1� �)
Z 1

t

e�(�+
)(s�t)Et [u (c (xs))] ds:

or, using (14) ;

� (�v (xt)� w (xt)) = �� (1� �)�H
Z 1

t

e�(�+
)(s�t)Et [w (xs)] ds

Q.E.D.

5.3 Derivation of (17)

This equation can be derived making use of the candidate solution (11) and
the policy rules. First, recall the candidate value function (11) and apply
Ito�s Lemma to �nd dw = w0dx+ 1

2
w00 (dx)2. Recall that the variation dx is

given by (2), and note that (dx)2 = �2�2x2dt: Thus,

dw = w0dx+
1

2
w00 (dx)2

dw =

�
[rx+ (�� r) �x� c]w0 + 1

2
�2�2x2w00

�
dt+ ��xw0dz

so the expected variation of the value function is

E [dw] =

�
[rx+ (�� r) �x� c]w0 + 1

2
�2�2x2w00

�
dt
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where the partial derivatives are w0 = (1� b) w
x
; and w00 = �b (1� b) w

x2
: It

follows from (12) and (13) that the variation of the optimal value function is

dw = (1� b)
 
��H + r +

(�� r)2

2b�2

!
wdt+

(1� b)
b

(�� r)
�

wdz;

with expectation

E [dw] = (1� b)
 
��H + r +

(�� r)2

2b�2

!
wdt

which implies

Et [ws] = w (xt) exp

(
(1� b)

 
��H + r +

(�� r)2

2b�2

!
(s� t)

)
:

Q.E.D.
Alternatively we could recall the candidate solution (11)

w (xs) = �
�b
H

x1�bs

1� b; 8s � t

and that w0 = (1� b) w
x
; and w00 = �b (1� b) w

x2
: And from Ito�s Lemma:

dw = w0dx+
1

2
w00 (dx)2

5.4 Derivation of elasticities of consumption with re-
spect to portfolio�s expected return and variance

Recall the MPC of the hyperbolic IG model (20)

�IG � �H j�!1 =
1

b� (1� �)

�

 � (1� b)

�
��� b ��

2

2

��
:

The elasticity of consumption with respect to expected returns would be

�c;��jIG � ��
@c

@��

1

c
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Taking the derivative
@c

@��
=
@�

@��
x+ �

@x

@��

we note that @x0
@��
= 0; and

@c

@��
=
@�

@��
x =

b� 1
b� (1� �)x

therefore
�c;��jIG = ��

b� 1
b� (1� �)

x

c

Recalling (13) ; we can write

�c;��jIG = ��
b� 1

b� (1� �)
1

�

In similar way we can �nd the elasticity of consumption with respect to
portfolio volatility

�c;��2jIG = ���
2 b

b� (1� �)
b� 1
2

1

�H
:
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TABLE 1 - RESPONSE OF STOCK PRICES TO CHANGES IN RISK   
UNDER HYPERBOLIC DISCOUNTING RELATIVE TO EXPONENTIAL DISCOUNTING 

 
This table reports the ratio Ω = (∂αIG/∂σ2 │β<1 ) ⁄ (∂αM/∂σ2 │β=1) = b / (b-(1-β)) for various combinations 
of the relative risk aversion parameter b and the short-run discount factor β.  

 
 
 

    
Short-run 

discount factor β    
Relative Risk  
Aversion  b β = 0.4 β = 0.5 β = 0.6 β = 0.7 β = 0.8 β = 0.9 β = 1.0 

1.00 2.500 2.000 1.666 1.428 1.250 1.111 1.000 

1.20 2.000 1.714 1.500 1.333 1.200 1.090 1.000 

1.40 1.750 1.556 1.400 1.272 1.167 1.076 1.000 

1.60 1.600 1.455 1.333 1.231 1.143 1.066 1.000 

1.80 1.500 1.385 1.286 1.200 1.125 1.058 1.000 

2.00 1.429 1.333 1.250 1.176 1.111 1.052 1.000 

2.20 1.375 1.294 1.222 1.158 1.100 1.047 1.000 

2.40 1.333 1.263 1.200 1.143 1.091 1.043 1.000 

2.60 1.300 1.238 1.182 1.130 1.083 1.040 1.000 

2.80 1.273 1.217 1.167 1.120 1.077 1.037 1.000 

3.00 1.250 1.200 1.154 1.111 1.071 1.034 1.000 
        

 
 




