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A B S T R A C T

Competitive situations that involve cognitive performance are widespread in labor markets, schools, and
organizations, including test taking, competition for promotion in firms, and others. This paper studies cog-
nitive performance in a high-stakes competitive environment. The analysis takes advantage of a natural
experiment that randomly allocates different emotional states across professional subjects competing in a
cognitive task. The setting is a chess match where two players play an even number of chess games against
each other alternating the color of the pieces. White pieces confer an advantage for winning a chess game
and who starts the match with these pieces is randomly decided. The theoretical analysis shows that in
this setting there is no rational reason why winning frequencies should be better than 50-50 in favor of the
player drawing the white pieces in the first game. Yet, we find that observed frequencies are about 60-40.
Differences in performance are also stronger when the competing subjects are more similar in cognitive
skills. We conclude that the evidence is consistent with the hypothesis that psychological elements affect
cognitive performance in the face of experience, competition, and high stakes.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, economists have paid considerable attention to
the relationship between perceptions and reasoning, and to emo-
tions such as loss aversion, reference points, disappointment and
others. There is evidence that these and other behavioral effects
are in fact important for explaining a wide range of economic and
social behavior.1 Despite their potential importance, however, little
is known about the relevance of these effects on cognitive perfor-
mance. Do they exist? If so, do they persist in the face of experience,
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1 Camerer (2003), Rabin (1998) and DellaVigna (2009) provide excellent surveys.

competition, and high stakes? These are the questions we study in
this paper.

Understanding cognition is important. Numerous studies estab-
lish that measured cognitive ability is a strong predictor of occupa-
tional attainment, wages, and a range of social behaviors in adults, and
several studies document its importance in predicting the schooling
performance of children and adolescents.2 An emerging body of liter-
ature also finds that “psychic” costs explain a range of economic and
social behavior (see, e.g., Carneiro et al. (2003), Carneiro and Heck-
man (2003), Cunha et al. (2010), Heckman et al. (2006a)). Besides
social and economic outcomes, recent research shows that cognitive
ability is also important for financial market outcomes.3 Thus, numer-
ous settings represent competitive situations that involve cognitive
performance (e.g., test taking, student competition in schools, compe-
titions for promotion in certain firms and organizations, and others),
and understanding the relationship between cognitive performance

2 See, for instance, Neal and Johnson (1996), McArdle et al. (2009), and other
references therein. Heckman et al. (2006b) review this literature and present an
analysis of the effects of both cognitive and noncognitive skills on wages. They
show that a model with one latent cognitive skill and one latent noncognitive skill
explains a large array of diverse behaviors including schooling, work experience,
occupational choice, and participation in various adolescent risky behaviors.

3 See, for instance, Agarwal and Mazumder (2013), Bertrand and Morse (2011),
Gerardi et al. (2010), and Cole and Shastry (2009).
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and psychological effects is an important question in the literature
on human capital, schooling, behavioral economics and others.

This paper contributes to these strands of economics literature by
studying the impact of psychological differences on cognitive perfor-
mance in a competitive environment. The analysis benefits from the
opportunity provided by a randomized natural experiment that, in
effect, exogenously assigns different emotional states across subjects.
Similar natural experiments to the one we study have been used
to examine the role of psychological effects when subjects perform
non-cognitive tasks, and this paper extends the analysis to study
their impact on the performance in cognitive tasks. As such, and to
the best of our knowledge, it represents the first study that evalu-
ates the causal link from behavioral effects to cognitive performance
in a competitive setting taking advantage of a natural experiment.

The randomized experiment comes from professional sports.
Important elements of human behavior are starkly observable in
these settings. As Rosen and Sanderson (2001) indicate, “if one of
the attractions of sports is to see occasionally universal aspects
of the human struggle in stark and dramatic forms, their attrac-
tion to economists is to illustrate universal economic principles in
interesting and tractable ways.” Thus, not surprisingly, a number of
prominent findings in economics have been documented for the first
time studying sports settings. For instance, without attempting to
be exhaustive, Ehrenberg and Bognanno (1990) investigate incentive
effects in golf tournaments, Szymanski (2000) studies discrimination
using soccer data, Garicano et al. (2005) study social pressure as a
determinant of corruption in a soccer setting, and Bhaskar (2009) and
Romer (2006) analyze optimal decision-making using cricket and
football data respectively.

Much like these sports settings, ours represents a valuable oppor-
tunity for studying an open question in the literature for a number of
reasons:

First, the situation involves a tractable number of subjects (just
two) competing at a game that is considered the ultimate cogni-
tive sport (chess). The game they play has complete information
and involves no chance elements. The game is strictly competitive
or zero-sum. Pure conflict situations in which one person’s gain is
always identical to another’s loss involve no potential elements of
cooperation. As such they represent the cleanest possible context to
study competitive behavior. Subjects compete in the same setting and
under identical circumstances and, as we will see in the next section,
the only difference is the randomly determined order in which they
complete a task.

Second, and most importantly, we take advantage of existing
results in the literature (to be discussed below) that show that
the order of competition generates differences in emotional states.
Using the same type of randomly assigned treatment and control of
these emotional states we extend existing research to the study of
performance on cognitive tasks in a competitive environment.4

Third, the setting involves professional subjects who are char-
acterized by the highest degree of cognitive skills at the specific
competitive task they perform as professionals (playing chess). Thus,
we can study if biases exist in the face of experience, competition and
high stakes. This is also important because existing research has found
that individuals with higher cognitive ability demonstrate fewer and
less extreme cognitive biases that may lead to suboptimal behavior.5

4 As is well known, a randomized experiment is a powerful methodology not
often available in the social sciences that ensures that the conditions for causal
inference are satisfied (Manski, 1995). There is also a related literature suggesting
that providing relative performance information (a consequence of the order of
competition in our setting) affects performance (Azmat and Iriberri, 2010).

5 See, for instance, the recent results in Gill and Prowse (forthcoming). Also,
Benjamin et al. (2013) and Frederick (2005) report similar findings for high school and
college students, respectively, using different measures of intelligence and cognitive
ability.

Fourth, direct measures of cognitive abilities are often lacking in
the literature and can be measured only indirectly (through their cor-
relation with other variables). The setting in this paper provides a
highly precise measure of the cognitive ability of the players at the
task they perform. In particular, subjects have a rating according to
what is called the “ELO rating method” (see Section 4), and this rating
estimates quite precisely the probability that one player will outper-
form the other at the cognitive task. This is a valuable advantage of
the empirical setting.

Finally, the study concerns high-stakes decisions that subjects are
familiar with, that really affect them, to which they are used, and
that take place in their own real-life environment. In this sense, it
involves a set of useful characteristics in terms of stakes, familiarity
and nature of the environment. And from the perspective of observ-
ing and measuring behavior, a comprehensive dataset is available
where choices, outcomes, and treatments are cleanly measured.

From the theoretical point of view, we also develop rational and
behavioral models of optimal play to interpret the empirical evi-
dence. Importantly, these models will contain a contribution to the
game theoretical literature on repeated interactions and to the lit-
erature on multi-battle contests. In our setting, a match consists in
the repeated play of a given stage game but, differently from stan-
dard repeated games, the total payoff that players obtain may not be
a sum or an average of the payoffs in each period. The existing litera-
ture has studied the case of binary outcomes: in each stage game one
player wins and the other loses (see Walker et al. (2011)), but we are
aware of no study with more than two outcomes. The presence of a
third outcome (in our context, win, lose, and tie) brings in the issue
of how to chose risk during the match, which we incorporate into the
formal frameworks. This represents a novel aspect with respect to
the literature on multi-battle contests in which strategic risk taking
is not a choice variable (e.g., Konrad and Kovenock (2009)).

The rest of the paper is structured as follows. Section 2 describes
the natural experiment and a brief literature review. Section 3 devel-
ops formal rational and behavioral models of the task the subjects
undertake. The models allow us to identify the conditions under
which we may be able to conclude, using the average treatment
effects from the natural experiment, whether behavioral elements
have an impact on cognitive performance. Section 4 describes the
data. Section 5 presents the main empirical evidence, and Section 6
concludes.

2. The natural experiment

In a chess match, two players play an even number of chess games,
typically about 6 to 10 games, against each other. Games are gener-
ally played one per day, with one or two rest days during the duration
of the match. The basic procedure establishes that the two players
alternate the colors of the pieces with which they play. In the first
game, one player plays with the white pieces and the other with the
black pieces. In the second game, the colors are reversed, and so on.
Who plays with the white pieces in the first game is randomly deter-
mined, and this is the only procedural difference between the two
players. According to the rules of FIDE (the Fédération Internationale
d’Échecs, the world governing body of chess), the order is decided
randomly under the supervision of a referee. This random draw of
colors, which is typically conducted publicly during the opening cer-
emony of the match, requires that the player who wins the draw will
play the first game with the white pieces. Therefore, the fact that
players have no choice of order or color of the pieces makes it an
ideal randomized experiment for empirically establishing causality.

The explicit randomization mechanism used to determine which
player begins with the white pieces in a sequence of games where
both players have exactly the same opportunities to play the same
number of games with the same colors, have the same stakes, are
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in the same setting and where all other circumstances are identical,
suggests that we should expect both players to have, ceteris paribus,
exactly the same probability of winning the match. That is, absent
behavioral effects associated with the order of colors, there is no
rational reason why observed winning frequencies should be differ-
ent from 50-50. 6 Yet, we find that this is not the case. As anticipation
of the results, what we observe instead is that winning probabili-
ties are about 60-40 in favor of the player who plays with the white
pieces in the first and in all the odd games of the match.

As will be discussed in more detail later, playing with the white
pieces is advantageous to win a chess game. This means that, ceteris
paribus, the player playing with the white pieces in the odd games
of the match is randomly allocated a greater likelihood to be lead-
ing during the course of the match. Conversely, his opponent, who
plays with the white pieces in the even games of the match, is
more likely to be lagging. Hence, this natural experiment shares
the same basic design used recently in the literature to study the
relevance of emotional or psychological states in understanding
the behavior of subjects performing non-cognitive tasks in compet-
itive environments. In particular, Apesteguia and Palacios-Huerta
(2010), Genakos and Pagliero (2012), Pope and Schweitzer (2011),
and Genakos et al. (2015) provide strong evidence for these effects
from weightlifting, golf, penalty kicks in soccer, and diving competi-
tions, respectively. Our study, therefore, extends existing research to
the area of cognitive performance in a competitive environment using
the same type of randomly determined asymmetry in emotional
states. With respect to the term “emotional states,” Sokol-Hessner et
al. (2009) document how loss aversion is a basic hedonic property
of our reaction to losing. In particular, they combine physiological
measurements of arousal and various cognitive strategies to study
how differences in arousal to losses relative to gains correlate with
behavioral loss aversion. It is in this sense that we refer through-
out the paper to the random determination of the order of play (the
advantage of playing with the white pieces in the even games) as
effectively randomizing emotional states.7

Finally, it seems appropriate to quote a reflection by Osborne and
Rubinstein (1994) p.6) who were the first to identify the research
potential of this specific natural setting (chess) to contribute to
our understanding of bounded rationality, including the relationship
between cognitive abilities and behavioral effects (italics added):

“When we talk in real life about games we often focus on the
asymmetry between individuals in their abilities. For example, some
players may have a clearer perception of a situation or have a greater
ability to analyze it. These differences, which are so critical in real
life, are missing from game theory in its current form. To illustrate
the consequences of this fact, consider the game of chess. In an actual
play of chess the players may differ in their knowledge of the legal
moves and in their analytical abilities. In contrast, when chess is
modeled using current game theory it is assumed that the players’
knowledge of the rules is perfect and their ability to analyze it ideal.
Results we prove [. . . ] imply that chess is a trivial game for “rational”
players: an algorithm exists that can be used to “solve” the game.
This algorithm defines a pair of strategies, one for each player, that
leads to an “equilibrium” outcome with the property that a player
who follows this strategy can be sure that the outcome will be at
least as good as the equilibrium outcome no matter what strategy
the other player uses. The existence of such strategies (first proven
by Zermelo in 1913) suggests that chess is uninteresting because it
has only one possible outcome. Nevertheless, chess remains a very
popular and interesting game. Its equilibrium outcome is yet to be

6 In Section 3 we qualify this statement.
7 Other references with neurological and physiological evidence that support our

use of these terms include Bechara et al. (1997), Schaefer et al. (2002), Ochesner et al.
(2004), and Kermer et al. (2006)

calculated; currently it is impossible to do so using the algorithm.
Even if White, for example, is shown one day to have a winning
strategy, it may not be possible for a human being to implement
that strategy. Thus, while the abstract model of chess allows us to
deduce a significant fact about the game, at the same time it omits
the most important determinant of the outcome of an actual play
of chess: the players’ “abilities.” Modeling asymmetries in abilities
and in perceptions of a situation by different players is a fascinating
challenge for future research, which models of “bounded rationality”
have begun to tackle.”

To the best of our knowledge, no previous research has taken the
opportunity that this setting provides to study these aspects.

3. Rational and behavioral models of a match

A chess match is a nontrivial setting in which it is not pos-
sible to attribute differences in performance, if any, without first
understanding what is the role that rational and behavioral elements
may play in behavior. So, what is the role that these elements play
in a chess match? Under what conditions may we conclude that
psychological or rational effects have an impact on cognitive perfor-
mance? In this section we provide a formal analysis to address these
questions.

Recall that the randomly determined color of pieces generates
one very specific type of asymmetry between the players: as playing
with white pieces confers a strategic advantage in a chess game,8 the
random draw of colors means that players who begin playing with
the white pieces are randomly given a greater opportunity to leadin
the match and, conversely, those with the black pieces are given a
greater opportunity to lag in the match.

We start with a canonical model (Subsection 3.1), which we then
develop to include rational and psychological elements (Subsections
3.2 and 3.3). For the sake of exposition, we use chess terminol-
ogy. Needless to say, the analysis also applies to other settings with
repeated interactions in which the stage games have three possible
outcomes.

3.1. The canonical model

Consider a chess game between two identical players: white and
black. Let W > 0 denote the probability that the player with the white
pieces (white) wins and L > 0 the probability that the player with
the black pieces (black) wins. We assume that W + L < 1, so 1 −
W − L > 0 is the probability that the game ends in a draw. In chess
it is strategically advantageous to play with the white pieces, which
means that W > L. As just noted, empirically W is about 0.28–0.30
and L about 0.17–0.18.

A canonical chess match consists of T chess games, where T is an
even number. In game 1, Player 1 plays with the white pieces and
Player 2 with the black ones. In subsequent games the colors are
alternated. Since a chess match is a constant-sum game, then, with-
out loss of generality, we can assume that the utilities for each of
the players are 1 if winning the match, 0 if losing, and 0.5 if they
tie.9

8 In the sample of matches we will study, 30% of the games were won by the
players with the white pieces and 17% by the player with the black pieces; the rest
are draws. In more than 165,000 chess games in the Chessbase dataset presented in
the next section, which includes our data from chess matches, the win rates are 28
and 18%, respectively, when both players have an ELO rating above 2500(typically
Grandmasters, the highest title a player can achieve).

9 Since both players are identical, we can represent their preferences by the same
utility functions. Then, without loss of generality, these utilities can be normalized so
that the utility of a win is 1 and the utility of a loss is 0. Hence, since we are in a
constant-sum game, the utility of a tie has to be 0.5.



J. González-Díaz, I. Palacios-Huerta / Journal of Public Economics 139 (2016) 40–52 43

Since both players are completely symmetric in a canonical chess
match, the following result is straightforward:

Proposition 1. The expected payoff in a canonical chess match is 0.5
for both players.

3.2. Rational models

Preliminaries. A chess match is a dynamic tournament in which,
in principle, players may not have the same effort conditions during
the match and/or may choose the amount of risk to take depending
on their leading/lagging state in the score. Typically, in the empiri-
cal studies in the literature that study non-cognitive performance in
competitions, the task is effortless and risk either does not play any
role (when the outcome of the task is binary, e.g., score or not) or can
be cleanly taken into account.10 In a chess game, however, strategic
risk taking matters since there are three possible outcomes (either
player may win the game or they may tie).

In what follows we try to understand the role that effort and risk
may play in our empirical setting:

a. EFFORT. With respect to the idea that players can exert differ-
ent effort during the match depending on the score, the design
by FIDE of the typical chess match intends to ensure that all the
games in the match are played under identical conditions and,
in particular, that players have sufficient time to fully recover
from the effort they exert: no more than one game is played
each day and rest days are scattered during the duration of the
match to ensure that players can play every single game in per-
fect physical conditions and can always exert the maximum
cognitive effort. This characteristic allows us to abstract from
modeling effort as a choice variable.11

b. RISK. A more important consideration is the fact that players
may choose the risk they take during the match depending on
the score. The role of strategic risk taking is, in general, not
trivial and requires a formal analysis, which we provide below.
Interestingly, the analysis shows that strategic risk taking is
not neutral: it favors the player who starts the match play-
ing with the black pieces. That is, absent behavioral effects this
player should win significantly more often a chess match. The
basic intuition for this result is the following. Lagging in the
score may induce a player to choose to lower his expected per-
formance by taking risks that he would otherwise not take in
exchange for a greater probability to win a game and catch up
in the score. Hence, the possibility of taking more risks and
having more variable outcomes (e.g., increasing the chance of
both winning and losing in exchange for a lower chance of
tying) is an instrument at the disposal of the lagging player.
This instrument, if anything, could help counteract any poten-
tial disadvantages given by the random determination of the
colors. Clearly, the leading player can also tailor the risk he

10 See, for example, Genakos and Pagliero (2012) and Apesteguia and Palacios-
Huerta (2010).
11 In related settings studied in the literature, effort is a choice variable. There is a

body of literature that studies multi-battle contests in which players compete in a
sequence of single component contests (battles) choosing effort (e.g., monetary expen-
ditures). Importantly, in these settings, and different from ours, effort determines
the size of the prize both in the component battles and in the overall battle. See for
example Harris and Vickers (1987) in the context of a patent race, and Klumpp and
Polborn’s 2006 study of the dynamics of candidate performance and campaign expen-
ditures in the US presidential primaries. Konrad and Kovenock (2009) characterize the
unique subgame perfect equilibrium in these multi-battle contests when effort is a
choice variable, but strategic risk taking is absent. Interestingly, in their setting, hav-
ing effort as a choice variable is neutral in that it does not cause any deviation from
50-50 in the probability of winning the contest. For a survey of the theory of contests
in sports see Szymanski (2003).

takes to the advantage that he has in the match and play more
conservative strategies. However, no matter how conservative
the leading player is, the lagging player can always drive the
game into a win–lose lottery where the probability of winning
is greater than if he had not chosen to take the additional risk.

This insight is not new; in fact, it is well known in the literature
on the strategic choice of risk (variance and covariance) in dynamic
competitive situations.12 Yet, as indicated earlier, it has been studied
neither in the game theoretical literature on repeated interactions
nor in the literature on multi-battle contests. In terms of empirical
implications, it means that if the player who starts the match playing
with the black pieces exhibits significantly greater cognitive perfor-
mance, then empirical evidence from average treatment effects alone
will not allow us to conclude whether behavioral effects are present
in the data. The reason being that his greater winning frequency may
simply reflect the advantage that strategic risk taking confers.

Before formalizing the role of strategic risk taking we discuss an
assumption specific to the empirical setting.

Assumption. In a typical chess game, the first mover advantage
gives the player with the white pieces at least as much control over
how “risky” the game will be. This is because he has at least as much
control over the type of “opening” that will be played. Although there
is not much discussion about this assumption in the chess commu-
nity, chess is too complex to provide a theoretical foundation for it.
We incorporate this asymmetry in the “technology” for risk taking in
the models and provide two pieces of support for this assumption:

1. Experts’ Assessment. It is not difficult to find statements from
world elite players that support this assumption. For instance,
former world champion Vladimir Kramnik (June 2011, inter-
viewed after the Candidates Matches to qualify to challenge the
reigning world champion, italics added) indicates: “My white
games were all pretty complicated, tense and full of fight. I am
responsible for my white games, and I was always trying to find
a way to fight with white, even if I did not get an advantage. But
with black it is very difficult and incredibly risky to start avoiding
drawish lines from the very beginning,because it can easily just
cost you a point in a very stupid way [. . . ] get a bad position, lose
the game, lose the match and feel like an idiot? I didn’t do it [. . . ].
It is a difficult decision which can easily backfire at this level.”

2. Empirical Evidence. We know that because of strategic risk tak-
ing the expected performance of a player in a game should
decrease when he is lagging. As a result, the assumption on the
asymmetric technology for risk taking has the additional impli-
cation that it should decrease by a greater amount when the
black player is lagging than when the white player is lagging. The
empirical evidence is consistent with this implication: when lag-
ging the observed decrease in performance is more than twice
as large for black (about 16%) than for white (about 7%). 13

12 See, for instance, Cabral (2002, 2003), Hvide (2002) and Hvide and Krinstiansen
(2003).
13 The expected performance is simply the number of points a player is expected

to achieve in the current game. That is, his expected score can be computed as
1 × “prob. of winning” + 0.5 × “prob. of a draw” + 0 × “prob. of losing” . The table
below shows the expected score for each player when lagging and when the match is
tied for matches between players with ratings above 2500 (typically Grandmasters).
Similar results are found for all other subsets we have examined, and for the whole
sample of matches. Performance loss denotes the relative change in the expected score.

ELO ratings above 2500

Expected score of white Expected score of black

Match tied 0.553 Match tied 0.447
White lagging 0.515 Black lagging 0.374
Performance loss 6.9% Performance loss 16.3%
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Models. We now present two models which incorporate into
the canonical model the assumption that the “technology” for risk-
return trade-off is at least as good for the player with the white
pieces than for his opponent. Importantly, we will find that this
assumption is sufficient (but not necessary) to show that the pos-
sibility of choosing the risk that is taken favors the player starting
with the black pieces. The reason is that the main element driving
the result is not this assumption but the “informational rent” of the
player starting with the black pieces: Since risk taking increases the
probability of winning a game at the cost of increasing by a larger
amount the probability of losing, risk taking is especially useful for
a lagging player. The intuition is again straightforward. Take a two-
game match and suppose that the player starting with black has lost
the first game. Then, in the second game, a draw is as bad as a loss
and therefore he only cares about increasing his probability of win-
ning. He will surely take risks regardless of whether or not white has
more control over risk. Of course, the same would be true for the
player starting with the white pieces if he had lost the first game, but
this effect is less important since the probability of winning with the
white pieces is greater than with the black pieces.

3.2.1. Model R1: only white controls risk
In this first model we assume that white has all the control over

the risk involved in the game, an assumption that we relax in the
following model by assuming that black also has some control over
the risk. By taking a risky action, white can increase his probabil-
ity of winning by Rw > 0 and his probability of losing by aRw, with
a> 1.14 Recall that in game 1 Player 1 plays with the white pieces
and Player 2 with the black ones. Since white has all control over risk,
Player 2 can guarantee for himself an expected payoff of at least 0.5
by mimicking in the even games the choices made by Player 1 in the
odd games. We show below that Player 2 can in fact do strictly bet-
ter. Intuitively, this is because he can benefit from the fact that he
has more information when he has to make his choices concerning
optimal risk-taking.

Proposition 2. Consider a match consisting of T = 2 games in Model
R1. Then, optimal play in this match leads to a higher expected payoff for
Player 2 than for Player 1.

Proof. See Appendix A.

Corollary 1. In a match consisting of T games in Model R1, the expected
payoff for Player 2 is greater than the expected payoff for Player 1.

Proof. See Appendix A.

The proofs of these results show that the empirical fact that W > L
is not necessary. Since Player 2 is the only one who can choose risk
in Period 2, he is also the first one who can make an informed choice
of risk. This “informational rent” is enough to give him an edge in the
match.

We show in the next model that if bothplayers have some control
over risk in both periods, then the fact that W > L is crucial to prove
that Player 2 has an advantage.

3.2.2. Model R2: both players control risk
In a given game both players can increase the probability of win-

ning by taking a risky action. A risky action by white increases his
probability of winning by Rw > 0 and his probability of losing by aRw,

14 Of course, we assume that W + L + (1 + a)Rw < 1.

with a> 1. Similarly, a risky action by black increases his probabil-
ity of winning by Rb ≥ 0 and his probability of losing by aRb. 15Under
the assumption that white has at least as much control over how
“risky” a chess game is, we have Rw ≥ Rb. We find below that this
is a sufficient condition to obtain that Player 2 has an advantage in a
match. Further, this condition is not necessary.

Note that, since W > L and a> 1, the following two conditions are
satisfied when Rw ≥ Rb:

C1: Rb < W
L Rw.

C2: Rb < Rw + Rw(a−1)(1−W−Rb)
L+Rw

.

We show next that these two conditions suffice to give Player 2 an
advantage in a two-game match. The intuition is that, although both
players can control risk in both periods, the possibility of choosing a
risky strategy is particularly valuable when a player is lagging in the
score. Since W > L, Player 2 is more likely to be lagging in the score
than Player 1 and, hence, he is the one more likely to benefit from
optimal risk taking in Period 2.

Proposition 3. Consider a match with T = 2 games in Model R2. When
C1 and C2 are satisfied, optimal play leads to a higher expected payoff
for Player 2. A sufficient condition for this result is that Rw ≥ Rb.

Proof. See Appendix A.

This generalizes Proposition 2.16 Although Rw ≥ Rb is sufficient
for this result, it is clear from conditions C1 and C2 that it is not nec-
essary as Player 2 will also have an advantage even in some cases
where Rw < Rb. In other words, stating the result in terms of these
two conditions is stronger than stating it in terms of Rw ≥ and Rb.
And again the intuition is that the “informational rent” that Player 2
always has is independent of which player has greater control over
risk in a game.

3.3. Behavioral models

We next extend the canonical and rational models to incorporate
psychological elements. We try to adopt the simplest possible formu-
lation that is both tractable and consistent with empirical evidence.
As discussed earlier, empirical evidence from non-cognitive tasks
supports the hypothesis that a gain/loss or leading/lagging asymme-
try relative to a reference point has an impact on performance. This
is the first aspect that we want to capture in the model. The literature
offers various ways to formalize this idea. In particular, preferences
with loss-aversion relative to a reference point have been widely
adopted in both theoretical and empirical research, rationalizing
a host of anomalies from labor supply, to consumer behavior and
finance. The incorporation of these ingredients into economic the-
ory dates back at least to Kahneman and Tversky (1979), and much
of the early literature equated the reference point with an exoge-
nous or history-dependent status quo. Recently, Köszegi and Rabin
(2006, 2007) suggested an alternative approach of forward-looking,
endogenous reference-point formation based on expectations. Here
we take the simplest possible version and simply assume that two
identical subjects perceive an even score in the match as their refer-
ence point and that their performance is a function of whether they
are leading or lagging in the score. As will be clear below, other for-
mulations are definitely possible. Yet, this one is tractable, proves

15 Obviously, it has to be the case that W + Rw + aRb + L + Rb + aRw ≤ 1.
16 Obviously, when Rb = 0, conditions C1 and C2 are trivially satisfied and this result

reduces to Proposition 2 in Model R1.
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convenient from a formal perspective, and captures the basic insights
of more general formulations.17

Let k denote the difference between the number of games won
and the number of games lost by the player who plays with the white
pieces; that is, k is positive when he is leading and negative when he
is lagging. Recall that the natural experiment randomizes the iden-
tity of the players more likely to be leading and lagging in the score.
Now, the probability that the player with the white pieces wins the
current game is W + e(k) and the probability that he loses is L − e(k),
where e( • ) is an increasing function that captures the behavioral
element with e(0) = 0. Winning generates elation whereas losing
generates disappointment and discouragement. As we are in a zero-
sum game, e( • ) captures this asymmetry and its impact on relative
performance. We further assume that −e(−1) ≥ e(1), which means
that the decrease in performance when lagging by one game for the
player with the white pieces is at least as large as the increase in
performance when leading by one game.18 Clearly, e( • ) must also
be such that W + e(k) ≤ 1, and L − e(k) ≥ 0. This formulation
captures in a parsimonious manner the basic ingredient of the loss
aversion effect typically considered in more general specifications
in the literature.19 Players have no control over this effect; in other
words it is not under volitional control. 20

3.3.1. Model B1: no strategic risk taking
We next prove that when risk taking is not a choice variable

Player 1 has an advantage. For intuition note that, since W > L, Player
2 is more likely to start game 2 lagging in the score (k = −1) than
leading in the score (k = 1 ), and that the properties of e( • ) imply
that this effect will negatively affect his performance in game 2.

Proposition 4. Consider a match consisting of T = 2 in Model B1.
If e(−1) < 0, then the expected payoff of Player 1 is higher than the
expected payoff of Player 2.

Proof. See Appendix A.

The proof of this result shows that the edge that the psycholog-
ical effect gives to Player 1 increases with the edge he has in the
first game, that is with W − L: Playing the first game with the white
pieces makes his opponent more likely to lag in the match and thus
more likely to be subject to the decrease in performance caused by
e(−1). We show below that the result extends to matches of arbitrary
length.

17 Current research in economic theory is trying to understand how to empiri-
cally distinguish among different models of reference dependence that share similar
formulations but specify different processes of reference point formation (see, e.g.,
Masatlioglu and Raymond (2014)). This is not at all trivial. In fact, providing separation
between competing accounts of reference-dependence is empirically difficult, often
pushing the limits of experimental feasibility. See Sprenger (2015) for a novel exper-
imental design that successfully accomplish this separation. Distinguishing among
competing models, however, is beyond what can be studied in our empirical setting.
18 “Disappointment,” “elation” and “discouragement” are terms used both in the eco-

nomics literature (e.g., Gill and Prowse (2012) and Abeler et al. (2011) in contexts of
effort provision) and in the psychology literature.
19 Goldman and Rao (2014) provide supporting evidence for these ingredients from

basketball. Using data from hundreds of thousands of plays, they find that among
NBA players: (1) expectations do not influence the reference point, which appears
remarkably stable around zero, and (2) when trailing, players perform worse on focus-
intensive effortless tasks (they shoot free throws with lower accuracy), a finding also
in Mertel (2011). Also in the context of basketball but at the level of teams, which may
exert effort and choose risk, Berger and Pope (2011) find evidence where lagging by a
little at half time can lead to winning at the end of the match.
20 An intriguing theoretical innovation is the possibility of incorporating a conscious

choice of anticipation (how to mentally prepare) as a mechanism through which
reference points are formed as beliefs (see Sarver, 2014).

Proposition 5. Consider a match consisting of T games in Model B1.
If e(−1) < 0, then the expected payoff for Player 1 is greater than the
expected payoff for Player 2.

Proof. See Appendix A.

3.3.2. Model B2: strategic risk taking
Thus far we have seen that strategic risk taking favors Player 2

(Section 3.2) while psychological effects e( • ) favor Player 1. Next, we
study the model in which both effects are considered simultaneously
and the extent to which they can be compared. We do this under the
assumptions on risk of Model R1 (white has all control over risk), not
only because the resulting model is more tractable but also because
it is the one where the effect of strategic risk taking is strongest.21 To
further facilitate the comparison, we fix a special form for the e( • )
function.22 We assume that there is k> 0 such that e(k) is essentially
of the form kk; that is, the magnitude of the effect is proportional
to k.23 This also means that −e(−k) = e(k). So the leading/lagging
state impacts performance in the same manner for the two types of
pieces.

The following result, whose proof builds upon the proof of
Proposition 5, says that the behavioral effect can be larger than the
effects of strategic risk taking.

Proposition 6. Consider a match consisting of T games in Model B2
with k> 0. If Rw is small enough relative to k, then the expected payoff
for Player 1 is greater than the expected payoff for Player 2 (for all
a ≥ 1).

Proof. See Appendix A.

It may also be interesting to obtain some sufficient condition for
the above result connecting k and Rw. This is what we do next.

Proposition 7. Consider a match consisting of T = 2 games with 0 <
k < M. Then, if k > WRw

W−L , optimal play in this match leads to a higher
expected payoff for Player 1 than for Player 2.

Proof. See Appendix A.

It is interesting to note that the parameter a does not play
any role in this condition on k,24 and that this condition is quite
intuitive.25 Finally, we note that a thorough numerical analysis

21 Of course, a similar analysis is possible under the assumptions of Model R2.
22 We have studied several variations of the function e( • ), obtaining comparable

results.
23 Formally, in order to ensure that we have well-defined probabilities for the three

possible outcomes of a chess game we need that, for all k, W+Rw+e(k) ≤ 1, L−e(k) ≥ 0,
and L+aRw +e(k) ≤ 1. So, we simply let M = min{1−W−Rw , L, 1−L−aRw} and define

e(k) =

{
min

{
kk, M

}
if k ≥ 0

− min
{−kk, M

}
if k < 0.

24 The reason is that this condition is computed when Player 1 plays safe in game 1
and recall that a> 1 implies that Player 2 only plays risky when he is lagging. In such
a case, Player 2 is indifferent between a draw and a loss so he only cares about his
probability of winning, which increases by Rw regardless of the value of a.
25 The greater Rw is, the greater the psychological effect has to be to overcome the

effect of strategic risk taking. And as W − L represents how much more likely Player 1
is to be leading rather than lagging after game one, then, greater values of W − L mean
that the psychological effect will come into play more often in favor of Player 1 in
game two, and this leads to smaller threshold values on k. Another sufficient condition
on k can also be obtained by studying his expected payoff from playing risky.
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suggests that a similar condition holds for matches of arbitrary
length T.26

SUMMARY. We conclude from the theoretical analysis that rational
effects operate in favor of Player 2 whereas behavioral effects sug-
gested by the existing literature operate in favor of Player 1. Thus,
evidence from average treatment effects will be consistent with the
hypothesis that psychological effects are a relevant determinant of
cognitive performance if the player starting with the white pieces
(Player 1) significantly outperforms his opponent (Player 2). Like-
wise, the evidence will support the hypothesis that rational strategic
risk taking is a significant determinant of observed performance if
the player starting with the white pieces (Player 1) is outperformed
by his opponent (Player 2).

4. Data

The dataset comes from Chessbase’s megabases, which are the
most comprehensive databases in chess. They have detailed data on
about 5 million games beginning in the XVIth century. We study
all the matches during the period 1970–2010, namely about 511
matches with about 3000 chess games. We select these four decades
since 1970 is the year when FIDE adopted the ELO rating system; that
is, the year after which records on the cognitive ability of the players
at this task, as measured by this rating, exist. The dataset is compre-
hensive as it includes all matches classified as such in Chessbase’s
megabases that exactly fit the randomized experiment described in
Section 2.27

A valuable characteristic of the data set is that we have a reliable
measure of the cognitive ability of the players performing the task.
Players have a rating according to the ELO rating method, and the dif-
ference between two players’ ELO ratings is functionally related to an
estimate of the probability that one of the players will beat the other
should they play a chess game. More precisely, a player’s ELO rating
is represented by a number that increases or decreases based upon
the outcome of games between rated players. After every game, the
winning player takes points from the losing player, and this number
of points depends monotonically on the rating difference between
the two players.28 Nowadays, the top 10 players in the world typi-
cally have an ELO rating between 2770 and 2850 points, the top 100
players a rating above 2650, and players with a rating above 2500
points are professionals who have the title of Grandmaster, which is
the highest title that a player can achieve.

Table 1 provides a description of the dataset and some pre-
treatment characteristics which, as expected, are not significantly
different across the players. This is also confirmed when the dataset
is split into different subsamples (see Table B1 in Appendix B).

26 It seems natural that the same condition that is sufficient to give Player 1 an
advantage in a two-game match is sufficient for longer matches as well. However, we
have not been able to obtain an analytic expression. The main challenge comes from
the fact that in a match of length T the best reply of a player (whether to play risky or
safe) at each possible situation depends on all the parameters of the game and also on
the current score. Yet, to study this conjecture, we have simulated matches for over
more than a million random parameter configurations constrained by k > WRw

W−L (and
for each parameter configuration we solved for match lengths going from T = 2 to
T = 32). In each and every one of these instances, the expected payoff of Player 1 was
greater than the expected payoff of Player 2.
27 As such, it does not include matches played versus a computer, matches without

a perfect alternation of colors, or matches where there is an incumbent who wins in
case of a tie (such as various current and past World Championship final matches). We
also exclude two observations of matches in which various games were played in the
same day without the standard resting time between games.
28 In case of a draw, the lower rated player also gains a few points from the higher

rated player. For a more detailed explanation of the ELO rating system we refer to
Chapter B.02 in the FIDE Handbook (https://www.fide.com/fide/handbook.html) in
World Chess Federation (2104).

Table 1
Dataset and Pretreatment Characteristics

Panel A: type and length of matches

Matches Games

N N

Type of match
World championship 83 689
Non-world championship 428 2181
Elite 133 953
Non-elite 378 1917

Length of match
Number of rounds < 6 214 658
Number of rounds 6–8 203 1231
Number of rounds > 8 94 981

All 511 2870

Panel B: pretreatment Characteristics of Players

Player 1 Player 2 Difference

ELO rating 2507.66 2510.18 −2.52
(164.01) (160.78) (105.82)

Age 30.82 31.52 −0.69
(10.83) (11.14) (15.67)

ELO criterion 0.475 0.524 −0.049
(0.493) (0.493) (0.986)

Age criterion 0.478 0.521 −0.043
(0.487) (0.487) (0.973)

Notes: The variables ELO criterion and Age criterion indicate the proportion of times
that the player shows a better entry in the criterion, ELO rating and Age respectively, at
the time of the match (= 1 if higher, = 0 if lower, = 0.5 if same). Standard deviations
in parentheses.

5. Empirical evidence

5.1. Evidence for professionals

In order to have an initial sense of the data, we begin by study-
ing all matches where players have an ELO rating above 2500 and the
rating difference between the players is no greater than 100 points.
We choose this subset because these players are professionals, the
stakes in the matches they play are high, and matches with a differ-
ence in ratings above 100 ELO points are quite uneven, as the strong
player is expected to win with a very high probability regardless of
other factors. This sample concerns 197 matches with a total of 1317
chess games.

As one would expect from the random treatment, the average
quality of the players that begin with the white pieces (mean =
2620.1, std. deviation=62.1) and the average quality of the players
that begin with the black pieces (mean = 2616.7, std. deviation =
57.4) are statistically identical ( p-value = 0.56). If the order had
no effect on the outcome of a match, the proportions of matches
won by the two players should be statistically identical. Yet, we find
that there is a significant and quantitatively important difference:
the player who begins playing the first game with the white pieces
wins 57.4% of the time, a proportion that is statistically different from
50% at the five percent significance level (p-value = 0.046).29 The
analysis in the previous section indicates that this average treatment
effect arising from the randomly determined difference in the order
of play is consistent with the hypothesis that psychological effects

29 Using Graham’s (2015) TL estimator to correct for the non-independence caused
by having certain players playing more than one match in the sample the p-value
is 0.037. This estimator is also used in the regression specifications. Further, in the
subset of matches where players played in just one match, where non-independence
is obviously not an issue, the proportions are maintained around 60-40.

https://www.fide.com/fide/handbook.html
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Fig. 1. The number of matches in each category are reported in parentheses. The p-values of the proportions Chi-square tests are 0.04 (All matches), 0.02 (Elite matches), 0.68
(Non-Elite matches), 0.004 (World Championship matches) and 0.79 (Non-World Championship matches).

resulting from the consequences of the playing order are a significant
determinant of cognitive performance.30

In Fig. 1 we split these data into “Elite” versus “Non-Elite”
matches, and in matches for the World Championship versus other
matches. “Elite” matches are those played by players with an ELO
rating above 2600, and World Championship matches are matches
belonging to the World Championship cycles organized by FIDE.
These are two intuitive ways of selecting arguably more important
matches, where the stakes are even higher, and players are more
skilled and have a deeper preparation.

We find that for Elite matches winning frequencies are 62-38 and
for World Championship matches 67-33. These frequencies are sta-
tistically different from 50-50 at standard significance levels (for Elite
matches p -value = 0.021, for World Championship matches p-value
= 0.005). Thus, the magnitude and significance of the effects increase
when considering Elite and World Championship matches.

5.2. Regression results

This subsection first reports the complete set of results for the
three different samples of professionals studied earlier (profession-
als with a rating above 2500, and Elite and World Championship
matches) with the same maximum rating difference. In each case we
consider two different specifications (Table 2).

Not surprisingly, the results confirm the previous evidence: the
effect of starting the match playing with the white pieces is positive
and strongly significant in each of the regressions, typically with p-
values below 0.05 and even below 0.01. Further, the impact becomes
greater in magnitude and statistically more significant in the more
important matches (Elite and World Championship). As expected,
the difference in ELO ratings between the players also has a positive
and significant impact in the probability of winning a match in every
regression specification.

30 In the raw data, when the first game ends in a draw the winning probability (fre-
quency) becomes higher for the player who started with the black pieces (45-55).
Also, the likelihood of winning the match is higher when white wins the first game
(87-13) and when black wins the first game (17-83). However, once the match begins
and the first game is played we do not have the effect of randomization anymore as
subsequent play is endogenous to the outcome of the first game. A random effects
dynamic panel data model with lagged dependent variables and unobserved hetero-
geneity would then be needed to obtain unbiased and consistent estimates of the
different correlation effects of the final score with interim scores.

In Table 3 we report the main results. In the first two columns
we consider all the matches in Chessbase’s megabase regardlessof the
ELO level of the players and with no limit on the difference in ELO
ratings. These are the most general specifications. In the next three
columns we report the most complete specification for three mini-
mum ELO levels as well (corresponding with 2200, 2400 and 2600
ratings).

The results continue to confirm the strongly significant effect
of starting the match playing with the white pieces. Similarly, and
not surprisingly, the difference in ELO ratings continues to have
a positive and significant impact on the probability of winning a
match. The same results arise in columns three to five for the vari-
ous minimum ELO levels considered. A central result is that they are
particularly strong, in terms of size and significance, at the highest
level.31 Together with the evidence from Elite and World Champi-
onship matches in the previous table, it indicates that the biases
are strongest in the most important (and mentally more stressful)
matches. Thus, the clear patterns we observe are consistent with
the interpretation that increased stakes amplify the differences in
cognitive performance associated with the effect we document.32

Finally, we also note that a small percentage of matches (not
included in the sample) ended up tied. The same findings are
obtained in the corresponding ordered probit regressions with the
three outcomes (win, loss, tie) when these matches are included.
These results are reported in Appendix B.

5.3. Additional testable implication

We next take further advantage of the opportunity provided
by the fact that we have a reliable measure of the cognitive abil-
ity of the players to study the following testable prediction: given
the undoubted role that other factors may play in determining the
winner of a chess match, it should be the case that the effects of
beginning with the white or black pieces significantly contribute to
determining the outcome of a match only in relatively symmetric

31 In the regression specifications of Tables 2 and 3 , the interaction of “ELO differ-
ence” with “Starting with White Pieces” is not significant and has no significant impact
on the coefficient estimates of the rest of variables.
32 Consistent with these findings, Goldman and Rao (2014) find that the accuracy of

NBA players in focus-intensive effortless “free throws” is lower not only when trailing
but also in the NBA playoffs and when the games are nationally televised.
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Table 2
Probit Regressions for Winners of a Chess Match.

Matches with a minimum ELO: 2500 Elite matches minimum ELO: 2600 World championship matches

Intercept −0.170 −0.170 −0.300 −0.300 −0.391 −0.390
(16.68) (17.58) (23.10) (24.61) (29.27) (31.43)

Starts with white pieces 0.340∗∗ 0.340∗∗ 0.598∗∗∗ 0.600∗∗∗ 0.782∗∗∗ 0.780∗∗∗

(0.133) (0.128) (0.190) (0.188) (0.224) (0.228)
Rounds 0.000 0.000 0.000 0.000 −0.000 0.000

(0.020) (0.020) (0.030) (0.030) (0.038) (0.039)
Year 0.000 0.000 0.000 0.000 0.000 0.000

(0.008) (0.008) (0.012) (0.012) (0.016) (0.017)
ELO difference 0.012∗∗∗ 0.012∗∗∗ 0.013∗∗∗ 0.013∗∗∗ 0.011∗∗∗ 0.011∗∗∗

(0.001) (0.001) (0.002) (0.0028) (0.003) (0.003)
ELO points 0.000 0.000 0.000 0.000 −0.000 0.000

(0.001) (0.001) (0.003) (0.003) (0.003) (0.003)
Age difference −0.006 −0.000 −0.005

(0.006) (0.010) (0.012)
Age 0.000 0.000 0.000

(0.009) (0.014) (0.015)
Maximum ELO difference=100 Yes Yes Yes Yes Yes Yes
N (matches) 197 197 100 100 73 73
Log-Likelihood −234.12 −233.24 −114.35 −114.34 −81.99 −81.82
Akaike information criterion 480.24 482.48 240.69 244.69 175.97 179.63

Notes: ∗∗∗ denotes significant at the 1 percent significance level, ∗∗ at the 5 percent level, and ∗ at the 10 percent level. The independent variables are the following: “Starts with
white pieces” is a dummy variable that equals 1 if the player started playing the first game in the match with the white pieces; “Rounds” is the number of rounds in the match;
“Year” is the year the match takes place; “ELO difference” is the difference in ELO points with respect to the opponent; “Maximum ELO difference” is the maximum ELO difference
between the players in the sample; “Player’s ELO” is the ELO rating of the player; “Age difference” is the difference in age with respect to the opponent, and “Age” is the age of the
player. All the variables involving the rating and the age of the players are at the time the match takes place. The number of matches in which the difference in ELO levels is above
100 is 6 (World Championships), 16 (Elite, ELO>2600), 39 (ELO>2500), 68 (ELO>2400), 127 (ELO>2200), and 142 (complete sample). The number of tied matches are 4 (World
Championships), 17 (Elite, ELO>2600), 33 (ELO>2500), 49 (ELO>2400), 67 (ELO>2200), and 73 (complete sample). Standard errors in parentheses (Graham (2015)).

matches. That is, in any of the formal models considered in the pre-
vious section, the more similar in cognitive strength the two players
are, the greater the effects should be, and differences in the abil-
ity of the players should attenuate the differences in performance
observed in the natural experiment. In other words, the order of col-
ors should presumably tip the balance only when other factors are
relatively similar, and this effect should steadily decrease as players
are more different in their cognitive skills. We study this implication

in Fig. 2 which reports the evidence for the sample of matches
studied in Subsection 5.1.

Matches are sorted by the difference in ELO ratings between the
players, and then divided into quartiles from more similar players
(quartile 1) to less similar players (quartile 4). We find that the p-
values of the proportions Chi-square tests are 0.02 (quartile 1), 0.44
(quartile 2), 0.88 (quartile 3) and 0.88 (quartile 4). Further, reassur-
ingly, when ELO differences are larger than 100 (not reported in the

Table 3
Probit Regressions for Winners of a Chess Match

Complete sample Minimum ELO

2200 2400 2600

Intercept −0.101 −0.100 −0.120 −0.130 −0.280
(11.50) (11.66) (12.18) (14.62) (24.32)

Starts with white pieces 0.202∗∗ 0.200∗∗ 0.240∗∗ 0.260∗∗ 0.570∗∗∗

(0.090) (0.090) (0.096) (0.109) (0.188)
Rounds −0.000 0.000 0.000 0.000 0.000

(0.014) (0.014) (0.016) (0.018) (0.039)
Year −0.000 0.000 0.000 0.000 0.000

(0.005) (0.005) (0.006) (0.007) (0.012)
ELO difference 0.008∗∗∗ 0.009∗∗∗ 0.010∗∗∗ 0.012∗∗∗ 0.015∗∗∗

(0.000) (0.000) (0.000) (0.001) (0.002)
ELO points 0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.003)
Age difference −0.011∗∗ −0.012∗∗∗ −0.015∗∗∗ −0.001

(0.004) (0.004) (0.005) (0.010)
Age 0.000 0.000 0.000 0.000

(0.006) (0.006) (0.007) (0.014)
Maximum ELO difference None None None None None
N (matches) 438 438 414 315 116
Log-Likelihood −465.62 −459.23 −427.65 −327.54 −116.24
Akaike information criterion 943.24 934.45 871.29 671.08 248.48

Notes: ∗∗∗ denotes significant at the 1 percent significance level, ∗∗ at the 5 percent level, and ∗ at the 10 percent level. The independent variables are the following: “Starts with
white pieces” is a dummy variable that equals 1 if the player started playing the first game in the match with the white pieces; “Rounds” is the number of rounds in the match;
“Year” is the year the match takes place; “ELO difference” is the difference in ELO points with respect to the opponent; “Maximum ELO difference” is the maximum ELO difference
between the players in the sample; “Player’s ELO” is the ELO rating of the player; “Age difference” is the difference in age with respect to the opponent, and “Age” is the age of the
player. All the variables involving the rating and the age of the players are at the time the match takes place. The number of tied matches are 4 (World Championships), 17 (Elite,
ELO>2600), 33 (ELO>2500), 49 (ELO>2400), and 67 (ELO>2200). Standard errors in parentheses (Graham (2015)).
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is 61, 42, 46 and 48 respectively. The differences in the number of matches across the intervals come from the discreetness of the ELO ratings, which until the late 1999 moved in
increments of 5 points.

figure), there is no significant effect (p-value=0.7423). Thus consis-
tent with the basic hypothesis, only in matches between players of
similar cognitive ability are there significant differences in perfor-
mance between the players. And as predicted the size of the effect
increases when players become more similar in cognitive skills.33

6. Concluding remarks

Understanding all aspects of “competition” is central to eco-
nomics, and understanding the effects of cognitive and noncognitive
abilities is important not only in economics but in areas ranging
from cognitive psychology to neuroscience. Competitive situations
that involve cognitive performance are widespread in labor markets,
education, and organizations, including test taking, student compe-
tition in schools, competition for promotion in firms, and numerous
other settings. This paper contributes to the theoretical and empir-
ical literature on dynamic competitive situations, which shows that
incorporating behavioral elements arising from the state of the com-
petition may offer significant insights about human behavior that
otherwise would be lost. First, we have developed rational and
behavioral models that incorporate this ingredient. Second, in terms
of empirics, the literature has found that these emotional states are
important for explaining the behavior of professional subjects per-
forming non-cognitive tasks in sports such as golf, soccer, basketball
and weightlifting. Our findings show that they are also important in
competitive cognitive tasks.34

We hope these results will stimulate further research. We have
studied the impact of randomly allocated emotional differences on
cognitive decision making in a competitive situation involving high

33 This result may also contribute to explaining the previous findings that the effect
is stronger for Elite and World Championship matches. These are matches where play-
ers have a deeper preparation and hence, conditional on their rating, their deeper
preparation may make them more similar in cognitive skills during their matches.
34 In schools, for instance, providing students with relative performance informa-

tion (indicative of the state of the competition) has an impact on future performance
(Azmat and Iriberri (2010)).

stakes, sophisticated players, and elaborate decision processes. Pre-
vious research has found that individuals with higher cognitive
ability tend to exhibit fewer and less extreme cognitive biases that
may lead to suboptimal behavior. Thus, an open question for future
research is the extent to which these effects are important in other
parts of the distribution of cognitive abilities, in tasks and settings
with lower stakes, and even among the poor (Mani et al., 2013). This
may have relevant public policy implications.

A second open question concerns models of reference points. Cur-
rent developments in the theoretical and experimental literature are
trying to understand how to distinguish among various models of
reference dependence, and how these models relate to other models
of non-expected utility theory which rely on different psychological
intuitions.35 This represents an important and necessary contribu-
tion for continued progress. The results in this paper suggest that the
study of cognitive performance, both in individual decision-making
and in game theoretical situations, may represent a fruitful area for
future research to help us learn about processes of reference point
formation.

Appendix A

A.1. Proof of Proposition 2

Proof. We solve the game backwards. We start in Period 2, where
Player 2 plays with the white pieces. If Player 2 lost the first game,
he can only get a positive payoff by winning the second game, so he
chooses the risky action. If the first game was a draw then, since the
utility for a tie in the match is 0.5, Player 2 plays safe. That is, he does
not want to transfer probability from the probability of drawing to
the probability of winning if this entails transferring an even greater
probability from the probability of drawing to the probability of los-
ing (recall that a> 1). If Player 2 won the first game he just wants to
minimize the probability of losing the second game, so he plays safe.

35 See Masatlioglu and Raymond (2014), Sprenger (2015), and Sarver (2014).
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We look now at Period 1. We find that the expected payoff for
Player 1 is less than 0.5 regardless of his action. The expected payoff
for Player 1 if he chooses the safe action is:

W
(

1 − W + Rw

2

)
+ (1 − W − L)

(
L +

1 − W − L
2

)
+

L2

2
,

and this reduces to 1
2 (1 − WRw), which is less than 0.5. His expected

payoff when choosing the risky action is:

(W +Rw)
(

1 − W + Rw

2

)
+(1 − W − L − (1 + a)Rw)

(
L +

1 − W − L
2

)

+
(L + aRw)L

2
,

and this reduces to 1
2

(
1 − R2

w − Rw(a(1 − W) − (1 − W − L))
)
, which

is also less than 0.5 (recall that a> 1). �

A.2. Proof of Corollary 1

Proof. We already know that Player 2 can get an expected payoff of
0.5 simply by mimicking the actions of Player 1 in the previous game.
Assume now that he always follows the mimicking strategy except
in game T in the following case: if the score is tied at the end of game
T−2, then he plays risky in game T if he lost game T−1 and plays safe
otherwise. Proposition 2 implies that this is a profitable deviation
from the mimicking strategy and, therefore, its expected payoff for
Player 2 is greater than 0.5. �

A.3. Proof of Proposition 3

Proof. We solve the game backwards starting with Period 2. We
distinguish three cases.

Case. Suppose Player 1 won game 1. Then, in game 2, Player 1 is
indifferent between a victory and a draw, so he plays safe. Player 2 is
indifferent between a loss and a draw, so he plays risky. The expected
utility for Player 1 in this case is:

u1 =
1
2

(W + Rw) + 1(1 − (W + Rw)).

Case. Suppose Player 1 lost game 1. Following the above reasoning,
Player 1 plays risky in game 2 and Player 2 plays safe. The expected
utility for Player 1 in this case is:

u2 =
1
2

(L + Rb).

Case. Suppose that game 1 was a draw. Then, in game 2, since the
utility for a tie in the match is 0.5, both players play safe. That is, they
do not want to transfer probability from the probability of drawing
to the probability of winning if it entails transferring an even greater
probability from the probability of drawing to the probability of los-
ing (recall that a> 1). The expected utility for Player 1 in this case is:

u3 = 1L +
1
2

(1 − (W + L)).

We move now to Period 1. We can compute the expected utilities
for each combination of strategy profiles of the players in period 1.

Let uSR denote the expected utility of Player 1 when he plays safe and
Player 2 plays risky and similarly the other utilities. Then:

uSS = Wu1 + Lu2 + (1 − W − L)u3

uRR = (W + Rw + aRb)u1 + (L + aRw + Rb)u2

+(1 − (W + L + (1 + a)(Rw + Rb)))u3

uRS = (W + Rw)u1 + (L + aRw)u2 + (1 − ((W + Rw) + (L+ aRw)))u3

uSR = (W + aRb)u1 + (L + Rb)u2 + (1 − ((W + aRb) + (L + Rb)))u3.

We now show that, given Period 2’s optimal behavior, Player 2
can ensure for himself an expected utility higher than 0.5 by playing
safe in period 1. Then, whatever Player 2’s optimal choice is in period
1, it also gives him an expected payoff higher than 0.5. We compute
the utilities of Player 1 with his two actions in period 1 when Player
2 is playing safe. First, uSS reduces to 1

2 (1 + RbL − RwW), which is less
than 0.5 when C1 is satisfied. Second, uRS reduces to

uRS =
1
2

(
1 + L(Rb − Rw) − R2

w + Rw(1 + (a − 1)W + a(−1 + Rb))
)

,

which after some algebra can be rewritten as:

uRS =
1
2

(1 − (L + Rw)(Rw − Rb) − Rw((a − 1)(1 − W − Rb))) ,

which is less than 0.5 when C2 is satisfied. �

A.4. Proof of Proposition 4

Proof. The expected payoff of Player 1 is given by

W
(

1 − W + e(−1)
2

)
+ (1 − W − L)

(
L +

1 − W − L
2

)
+ L

L − e(1)
2

,

which reduces to 1
2 + −e(−1)

2 W − e(1)
2 L ≥ 1

2 + −e(−1)
2 (W − L) where

the inequality follows from the assumption −e(−1) ≥ e(1). Since W−
L > 0 and −e(−1) > 0, the expected payoff of Player 1 is greater than
0.5. Note that rather than assuming −e(−1) ≥ e(1), we could instead
have made the weaker assumption that −e(−1)W > e(1)L. �

A.5. Proof of Proposition 5

Proof. A T-game match is composed of many two-game mini-
matches. Suppose that a two-game mini-match is about to start and
let k denote the difference between the number of games won and
the number of games lost by Player 1. We denote by P1(k, s) the
probability that Player 1 is leading/lagging by k + s games after the
mini-match.

Following the above notation, P1(0, s) denotes the probability that
Player 1 is leading/lagging by s games after the first two games of the
match. Then, P1(0, 2) = W(L + e(1)), P1(0, 1) = (1 − W − L)(W + L),
P1(0, 0) = (1 − W − L)2 + L(L − e(1) + W(W − e(1)), P1(0, −1) =
(1−W−L)(W+L), and P1(0, −2) = L(W+e(1)). In particular, P1(0, 2)−
P1(0, −2) = (W − L)e(1) > 0 and P1(0, 1) = P1(0, −1).

The above probabilities show that Player 1 has a higher prob-
ability of being better-off than Player 2 after the first two games.
What we show next it is also easier for Player 1 to make a come-
back than it is for Player 2. More precisely, we show that, for each
k ∈ N and each s ∈ {2, 1, 0, −1, −2}, ∑2

s P1(k, s) ≥ ∑2
s P1(−k, −s). In

words, the probability that Player 1 improves his score by at least s
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points when the current score is k is greater than the probability that
it is for Player 2 to improve by at least s points when the score is
−k. Establishing this result independently of k and s, combined with
P1(0, 2) − P1(0, −2) > 0 and P1(0, 1) = P1(0, −1), delivers the result.

The difference P1(k, 2) − P1(−k, −2) reduces to (W − L)(e(k +
1) − e(k)) which is non-negative, since e( • ) is an increasing func-
tion. Now, P1(k, 1) = P1(−k, −1) and, hence, P1(k, 2) + P1(k, 1) −
P1(−k, −2) − P1(−k, −1) reduces again to (W − L)(e(k + 1) − e(k)).
P1(k, 0) − P1(−k, 0) = (W − L)(2e(k) − e(k + 1) − e(k − 1) and so
P1(k, 2)+P1(k, 1)+P1(k, 0)−P1(−k, −2)−P1(−k, −1)−P1(−k, 0) equals
(W − L)(e(k) − e(k − 1)) which is also non-negative. The next inequal-
ity follows from the fact that P1(k, −1) = P1(−k, 1) and the final one
is immediate since

∑2
s=−2 P1(k, s) =

∑2
s=−2 P1(−k, −s) = 1. �

A.6. Proof of Proposition 6

Proof. Note that Model B1 is a particular case of Model B2 in which
Rw = 0. We could now replicate the probabilistic analysis in the
proof of Proposition 5 and obtain new expressions for the probabil-
ities computed there. Importantly, all of them would be continuous
in Rw. Therefore, since the case Rw = 0 leads to a strictly greater
expected payoff for Player 1, the same will also be true if Rw is small
enough. For the observation regarding a we just need to note that if
a value of Rw works for a = 1, it will also work for greater a (which
means that risk taking is more costly). �

A.7. Proof of Proposition 7

Proof. By repeating the arguments in the proof of Proposition 2, we
can get that the expected payoff for Player 1 if he chooses the safe
action is:

W
(

1 − W + Rw − k

2

)
+ (1 − W − L)

(
L +

1 − W − L
2

)
+

L(L − k)
2

.

This reduces to 1
2 (1 − WRw + k(W − L)), which is more than 0.5 if

k > WRw
W−L . �

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.jpubeco.2016.05.001
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